2014年6月3日火曜日

ニュートン力学

ニュートン力学

『自然哲学の数学的諸原理』初版
ニュートン力学(ニュートンりきがく、英語: Newtonian mechanics)とは、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである[1]。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる[1]。
目次 [非表示]
1 概要
1.1 質点に関する運動の法則
2 継承と発展
2.1 解析力学
3 現代物理学での位置付け
4 出典
5 注釈
6 参考文献
7 関連項目
概要[編集]
静止物体に働く力の釣り合いを扱う静力学は、ギリシア時代からの長い年月の積み重ねにより、すでにかなりの知識が蓄積されていた[1]。ニュートン力学の偉大さは、物体の運動について調べる動力学を確立したところにある[1]。
ニュートン力学は古典物理学の不可欠の一角を成している。「絶対時間」と「絶対空間」を前提とした上で、3 つの運動の法則(運動の第 1 法則、第 2 法則、第 3 法則)と、万有引力の法則を代表とする二体間の遠隔作用として働く力を基礎とした体系である。広範の力学現象を演繹的かつ統一的に説明し得る体系となっている。

Principia1846-513、 落体運動と周回運動の統一的な見方が示されている.
ニュートン力学は、1687年のニュートン自身による、3巻から成る著作『自然哲学の数学的諸原理』(略称: プリンキピア、Principia)を通して公表された[1]。ニュートン力学の主要な点はすべてこの中に含まれていると言ってもよい[1]。
『プリンキピア』の表現形式は、ユークリッド原論に倣った作図を用いて幾何学的証明を積み上げる方式を採っている。この表現の中には、エルンスト・マッハが指摘したように十分に論理的とは言えない点も含まれており、その後の時代の多くの人々によって整理しなおされ、別の説明方法も与えられている[1]。 今日的な「ニュートン力学」の解説は『プリンキピア』とは様相が異なったものとなっており、大学などで「ニュートン力学」と呼ばれている体系は、これを出発点としつつも多くの人々によって改良された、相対論以前の古典力学の体系と見なすのが適切である。
『プリンキピア』の冒頭部分は質量、運動量、慣性、力などの定義にあてられているが[2]、重さという概念の他に質量という概念を導入したことが画期的だとされている[1]。
なお、一般向けの図書などで、「ニュートンが運動に関する原理を発見した」といった表現がされることもあるが、物理学史的な研究の立場からは、先人であるシモン・ステヴィン、エドム・マリオット、ガリレオ・ガリレイ、ヨハネス・ケプラーらによって既に定量的に発見、研究されていた法則や、ルネ・デカルトの考え方、あるいは同時代に活動したロバート・フックを代表とする科学者、自然哲学者たちが得ていた知見を、ニュートンが数学的記述を用いて体系的にまとめあげた面が大きいことも指摘されている。
質点に関する運動の法則[編集]

プリンキピア内の第一法則と第二法則が書かれているページ(1687年版)
ニュートン力学は、物体を「重心に全質量が集中し大きさをもたない質点」とみなし、その質点の運動に関する性質を法則化し、以下の運動の3法則を提唱した[3][注釈 1]。また、これらの法則は、質点とは見なせない物体(剛体、弾性体、流体などの連続体)に対しても基礎となる考え方である[4][5]。
第1法則(慣性の法則)
質点は、力が作用しない限り、静止または等速直線運動する(これを満たすような座標系を用いて、運動法則を記述する)[6][注釈 2]。
第2法則(ニュートンの運動方程式)
質点の加速度 {\vec{a}} は、そのとき質点に作用する力 {\vec{F}} に比例し、質点の質量 {m} に反比例する[7][注釈 3][注釈 4]。
\vec{a} = \frac{\vec F}{m}\,.
第3法則(作用・反作用の法則)[8][注釈 5]
二つの質点 1, 2 の間に相互に力が働くとき、質点 2 から質点 1 に作用する力 {\vec{F}_{21}} と、質点 1 から質点 2 に作用する力 \vec{F}_{12} は、大きさが等しく、逆向きである。
\vec{F}_{21} = -\vec{F}_{12}\,.
力学分野における数多くの法則や定理は、基本的には、上の三つの法則から導出されるものである。 また、位置ベクトルの時間に対する 2 階の常微分方程式である運動方程式は、ある時刻の位置と運動量(あるいは速度)を与えれば、あらゆる時刻の運動状態が確定する方程式であり、その意味で、ニュートン力学は決定論的であるとされる。
継承と発展[編集]
古典力学
\boldsymbol{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m \boldsymbol{v})
運動の第2法則
歴史
[表示]分野
[表示]定式化
[表示]基本概念
[表示]主要項目
[表示]科学者
表・話・編・歴
ニュートンの力学は、その後、ダニエル・ベルヌーイ、レオンハルト・オイラー、ピエール・ルイ・モーペルテュイ、ジャン・ル・ロン・ダランベール、ジョゼフ=ルイ・ラグランジュ、ピエール=シモン・ラプラス、ガスパール=ギュスターヴ・コリオリらによって、今日的な力学体系の形にまとめ直され、ラグランジュやウィリアム・ローワン・ハミルトンによる解析力学へと発展した。
電磁気学が19世紀に発展した結果、電磁気学とニュートン力学が互いに矛盾することが問題となった。電磁気学における基本方程式であるマクスウェル方程式は、ニュートン力学における運動方程式と異なり、ガリレイ変換に対する普遍性を持たず、慣性系によらず電磁気学の法則が成り立つならばそれは相対性原理を修正することになる。逆に、ニュートン力学とガリレイの相対性原理が正しいならば、マクスウェル方程式は一般の慣性系では成り立たず、電磁気学を修正する必要がある。
19世紀末から20世紀初頭にかけて、ハインリッヒ・ヘルツ、ジョージ・フィッツジェラルド、ヘンドリック・ローレンツ、アルベルト・アインシュタインらの仕事によって、マクスウェルの理論の正当性が検証され、ニュートン力学は修正されることになる。 修正された新しい力学は特殊相対性理論と呼ばれ、ガリレイの相対性原理ではなくアインシュタインの相対性原理を基礎とし、ローレンツ変換に対して普遍な力学である。
その後に発展した一般相対性理論までの完成された力学は「古典力学」と呼ばれ、1920年代に成立した量子力学と区別される。 量子力学では局所実在論が成立せず、その意味でニュートン力学などの古典論とは決定的に異なっている。

ニュートンのゆりかご
解析力学[編集]
詳細は「解析力学」を参照
ニュートン力学はラグランジュ形式やハミルトン形式で再定式化された。これらは、ニュートンの運動法則を座標系の取り方によらずに一般的に成立するように構成されたもので、ラグランジュ形式では、最小作用の原理(変分原理)からニュートンの運動方程式を再現する。ハミルトン形式では、正準変数とポアソン括弧を用いることにより、ニュートンの運動方程式に対応する正準方程式を対称な形で表現することができる。
現代物理学での位置付け[編集]
現代の物理学の視点では、ニュートン力学は、「巨視的なスケールでかつ光速よりも十分遅い速さの運動を扱う際の、無矛盾・完結的な近似理論」と理解される。
特殊相対性理論は、物体の速さが光速よりも十分遅い条件下ではニュートン力学で十分近似されるし、量子力学の結果は、対象物体の質量を大きくした極限では、ニュートン力学の運動方程式の解と一致する。また、「ニュートンの万有引力理論は、重力が弱い場合の一般相対性理論の近似である。」とも言われる。例えば、人工衛星や惑星探査までを含む宇宙航行の運動の予測を行う際には、ニュートン力学を用いて十分な精度で計算できる場合が多い。http://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%88%E3%83%B3%E5%8A%9B%E5%AD%A

再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。 
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).

再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
(5月28日、宿舎から研究室に向っているとき、芝生の先に 木立ちが有り、その先に 入り江が見える情景を見て、エデンの花園のように感じた. そして、この声明の原案とエデンの花園の声明構想が閃いた。)
ゼロで割るを グーグルで調べると、2014.5.28.13:35現在
Cerca de 2 980 000 resultados (0,41 segundos) Resultados da procura
1. ゼロ除算 - Wikipedia
ja.wikipedia.org/wiki/ゼロ除算
Traduzir esta página
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定に ...
‎算数的解釈 - ‎初期の試み - ‎代数学的解釈 - ‎ゼロ除算と極限
2. 数学で「A÷0」(ゼロで割る)がダメな理由を教えてください ...
detail.chiebukuro.yahoo.co.jp › ... › 数学
Traduzir esta página
14/05/2007 - maru_i_nekoさん. 答えが ないから。 たとえばー 5÷0=Bとしましょうか。B×0=いくつに なりますか。 ゼロですよね。 とゆーことは、Bはゼロ?と思っちゃいますが、それだったらゼロ×ゼロが 5になってしまいます。おかしいですよね。
となっていて、290万件あるが、非常に当たり前の議論が多く、いわば、常識的な議論が多く、考え方などが幼稚であると考えられる。なを、6番目に再生核研究所の最近の成果が述べられている:
1. 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る ...
Traduzir esta página
Yoshinori Saito
21/04/2014 - 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方 再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱い ...
そこで、 その問題から、 数学的な考え方と、創造的な精神について触れたい。
まず、どうしてゼロで割れないのか、という疑問が、繰り返し問われているが、これは世に問われている多くの問題、神の問題などと同様に、論理的に 発想そのものが 相当おかしな議論と言える。
これは、割り算の定義をしっかりさせないで、ふらふら議論している、神の定義もしないで、神のことについていろいろ議論を繰り返している。問題にしている、問題の意味を理解しないで、論じている訳であるから、まことに奇妙な議論であるが、世に多いと言える。注意したい。( 逆に言えば、難しい問題とは、問題の意味さえ分からないとも言える)。
次に、真面目に議論して、割り算、分数の定義に基づいて、 不可能である という議論が多い。それは、それで正しいが、ここで、重要な数学の考え方を指摘したい。
数学で不可能である、できないということは、数学のそういっている数学の理論体系では不可能であるといっている事実である。 数学上の不可能は、そういっている理論体系では 不可能であることをいっている。これは、裏からみれば、それを可能にする理論体系、数学が、考え方が、有るかも知れない という発想に繋がる。上記、グーグル、あるいは人類の歴史上、そのように発想しなかったのは、人類の愚かさであり、永い間の盲点であったと言える。― 実際、数学者が、可能にする考えは無いか と問うのは当たり前のことであるが、ゼロ除算は できないという、 先入観で考えなかったのではないだろうか。 しかし、 その問題は、物理学では ブラックホール現象や、ニュートンの万有引力の法則に 深刻な問題を提起してきている、事実もある。― 実際に、自然に割り算の定義を拡張して、簡潔な結果、ゼロで割れば、何時でもゼロであるという結果が導かれた。それらは、高校生レベルの数学で十分であった:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
数学については、上記声明の中で、発見の詳しい状況、位置づけなどについても触れているが、 新しい結果は、予想できない、驚嘆すべき結果を述べている。複素解析学では、1/0 は無限遠点、無限と考えられており、実数でも ゼロを小さな正か、 負の数でゼロに近づくと考えれば、正の無限大や、負の無限大に発散すると考えるのが、世の常識である。 それが突然、ゼロであるとして、強力な不連続性を示しているからである。 上記声明の中で、世に有る爆発や接触などの強力な不連続性を示す、 基本的な現象の型を与えるのではないかとの明るい、予想を展開している。 ここで、触れたいのは、全く、新規な現象が現れたときの 我々の取り組む姿勢、精神の問題である。
まず、人間とは何者であるかを確認したい:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
人間は何でも知りたい、究めたい、それが本能である。 しかしながら、そんなのはつまらない現象であると理解して、考えない英明な方は、それも もちろん良いのであるが、いろいろ考えると楽しいと想像するのが、真理を追究する人間の姿勢に合っているのではないだろうか。ユニバースには 何でもありで、いろいろ裏があると考える方が、人生や研究を豊かにするのではないだろうか。 ユニバースと数学は どのように成っているのか、知りたいと考える。
新しい割り算の意味の位置づけ、評価は 世界史が明らかにするわけであるから、どのような影響を 世界史に与えるかは、もちろん、直ぐには分らない(再生核研究所声明 41:  世界史、大義、評価、神、最後の審判)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
以 上

0 件のコメント:

コメントを投稿