非ユークリッド幾何学
非ユークリッド幾何学(ひ-ユークリッド-きかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。
ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。
目次 [非表示]
1 歴史
1.1 平行線公準
1.1.1 古代ギリシア
1.1.2 アラビア
1.1.3 近代ヨーロッパ
1.2 非ユークリッド幾何学の成立
2 幾何学の相補性
3 関連項目
4 参考文献
5 外部リンク
歴史[編集]
詳細は「平行線公準」を参照
平行線公準[編集]
ユークリッドの著した「原論」('element')の1~4巻に於いては、今日で言うところのユークリッド幾何学に関して、古代ギリシア数学の成果がまとめられている。
さて、「原論」では最初にいくつかの公理・公準を述べているが、その中の第5公準が次の、平行線公準と呼ばれるものである。
1 直線が 2 直線に交わり、同じ側の内角の和を 2 直角より小さくするならば、この 2 直線は限りなく延長されると、2 直角より小さい角のある側において交わること。
これは他の公理に比べて自明性は低く、また明らかに冗長であったので、いくつかの疑念を生ずることとなった。
公理・公準として扱うことは正しいのだろうか? 定理なのでは無いだろうか。
あるいは、もっと自明で簡潔な、同値な命題が存在するのではないだろうか。
ここから、平行線公準の証明の試み、あるいは平行線公準の言い換えの試みが始まった。
古代ギリシア[編集]
プロクロスは、「原論」の注釈書に於いて平行線公準が定理なのではないかと述べている。
プトレマイオスは「平行線公準を証明した」と主張したが、その証明は巡り巡って「原論」第1 巻命題 29 に依っており、命題 29 は平行線公準により証明されているので主張は正しくなかった。
アラビア[編集]
近代ヨーロッパ[編集]
古代ギリシャ以降も、無数の「平行線公準の証明」が生まれたが、多くはプトレマイオスと同じ過ちを犯していた。しかし、その結果として「平行線公準と同値な命題」が作られた。
ジョバンニ・ジローラモ・サッケーリは、1773年、論文「あらゆる汚点から清められたユークリッド」(Euclides ab Omni Naevo Vindicatus)において、鋭角仮定・直角仮定・鈍角仮定という互いに背反かついずれかは成立するような仮定を設定し、直角仮定から平行線公準を導けることを示した。
同論文の定理 9 および定理 15 により、各仮定をより分かりやすく言い換えるなら次の通りである。
鋭角仮定
三角形の内角の和は 2 直角よりも小さい
直角仮定
三角形の内角の和は 2 直角に等しい
鈍角仮定
三角形の内角の和は 2 直角よりも大きい
サッケーリは、鈍角仮定および鋭角仮定は矛盾を生じると主張したが、その証明に於いてはやはり平行線公準に依存する命題を使ってしまっており、証明としては正しくなかった。しかしながら、上の 3 つの分類はその後の非ユークリッド幾何学の構築に大きな役割を果たした。
またヨハン・ハインリッヒ・ランベルトも1766年執筆の論文「平行線の理論」に於いて同様の主張をしている(この論文は1786年に発見された)。
カール・フリードリヒ・ガウスは、1824年11月8日の手紙に於いて、鋭角仮定のもとで整合的な幾何学が成立する可能性を示唆し、そこにはある定数があってこれが大きいほど通常の幾何学に近づくと述べた。
ガウスの言うある定数とは、現代の言葉で言えば空間の曲率 k に対し、-(1/k)のことである。ガウス個人は非ユークリッド幾何の存在を確信していたと見られるが、宗教論争に巻き込まれる事を恐れ公表していない。
非ユークリッド幾何学の成立[編集]
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ベルンハルト・リーマン
[icon] この節の加筆が望まれています。
あわせて4人が3通りの方法を発見した。その結果をまとめると以下のようになる。なお、ここでは曲がった面上や空間内の「直線」は二点間の最短距離を指す。平行線は絶対に交わらない二本の直線である。
研究結果
結論 リーマン ユークリッド ロバチェフスキー・ボーヤイ
平行線の数 0本 1本 2本以上
図形 凸面(球体) 平面 擬球面(鞍型)
幾何学の相補性[編集]
楕円・放物・双曲の各幾何学は、互いに他を否定する存在ではなく、いわば並行に存在しうる幾何学であることを注意しておきたい。各幾何は、それぞれ他の幾何の中に(少なくとも局所的には)モデルを持ち、したがって互いに他の体系の正当性を保証することになるからである。つまり、ユークリッド幾何学が無矛盾な体系であれば他の幾何学もやはり無矛盾だというわけである。
関連項目[編集]
ユークリッド幾何学
楕円幾何学
球面幾何学
双曲幾何学(ボヤイ・ロバチェフスキー幾何学)
公理主義
リーマン幾何学
参考文献[編集]
近藤洋逸 『新幾何学思想史』 筑摩書房〈ちくま学芸文庫 Math&Scienceシリーズ〉、2008年10月8日。ISBN 978-4-480-09163-5。
高木貞治 「2. 平行線の話」『復刻版 近世数学史談・数学雑談』 共立出版、1996年12月10日、42-81頁。ISBN 4-320-01551-7。
寺阪英孝 『非ユークリッド幾何の世界 幾何学の原点をさぐる』 講談社〈ブルーバックス 312〉、1977年5月25日。ISBN 4-06-117912-8。
中岡稔 『双曲幾何学入門 線形代数の応用』 サイエンス社〈数理科学ライブラリ 5〉、1993年3月1日。ISBN 4-7819-0688-5。
『宇宙や法則がよくわかるやさしい数学の世界 黄金比,無限,銀河系の質量は?』 ニュートンプレス〈ニュートンムック Newton別冊〉、2009年1月15日。ISBN 978-4-315-51849-8。
深谷賢治 『双曲幾何 現代数学への入門』 岩波書店、2004年9月7日。ISBN 4-00-006882-2。
谷口雅彦・奥村善英 『双曲幾何学への招待 複素数で視る』 培風館、1996年9月。ISBN 456-300242-9。http://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%B9%BE%E4%BD%95%E5%AD%A6
再生核研究所声明173(2014.8.6) 愛が無ければ観えない
2013.2.26.11:15:
愛が無ければ、見えない、 関心が無ければ、進まない、できると考えなかった。
何と 15年も前から、 考え、 3人の学位論文の素材になり、 2冊の著書でも扱い、 S先生やF先生も講究録で触れている。 それなのに馬鹿みたいなことに気付かなかった。
と述べている。要するにある結果に気づいたのであるが、先が有ると思わなかったので、関心をもって考えなかったので、長い間 基本的な結果に気づかず、通り過ぎていた、事を示している。
さらに、最近のゼロ除算100/0=0,0/0=0の結果の場合は 酷い歴史的な事件と言える。すなわち、ゼロ除算100/0=0は 割り算を掛け算の逆と考えると、不可能であることが証明されるので、不可能の烙印を押されていた。しかし、物理学などでは重要な問題が絡んでいるにも関わらず、何百年間も人は、新しい考え方に関心を抱かず、不明のままで年を重ねてきた。それが、偶然ちょっとしたきっかけで、解決をもたらした(再生核研究所声明171参照)。
興味、関心、愛が無ければ、何も気づかず、発見もせず、認知さえしないで、空しいものになる。
そもそも人間とは何者かと問えば、まずは、動物であるから、本能である、食、男女の愛、家庭、育児、そして 生活の基礎を作る仕事など、それらは、生きることの原理であるから、それらに関する関心は誰でもあると考えられる。生活や人生の骨格であり、それらの関心は基本的なもので、共通的、普遍的なものであると考えられる。既に、それらの件で、汲々として追われていて、他に多くの関心を擁ける余裕が持てない状況は、世に広く見られる。
しかしながら、もし、人間がそれらの原理的な関心だけに追われれば、人生において、何か もの足りないと思うだろう。上手く生きて退職して、上記の基本的な関心を、そう強く気に掛ける必要性から解放された人が、生きることで どのような関心を抱くは、極めて興味深い。スポーツを楽しむ、文化活動に励む、宗教に興味を深める、何かの研究に励む、ビジネスなどを始める、など、などである。 もし、ぼんやり暮らしていれば、人間の一生も、多くの動物の一生も 本質的にはそうは変わりないと ぼんやり抱くだろう。
特に知的な好奇心を失えば、本質的に人生は、殆ど食べること、生活するで 終わってしまうであろう。この好奇心こそ、人間の生命力であり、人間らしい生 と言えるだろう:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている― 再生核研究所声明148.
そこで、そこまでは行かなくても、 人間が何に関心を抱くは 極めて興味深い、人間研究の課題である。実に多種多様であり、世間を見てもその多様性には驚かされる。その多様性こそ人間社会の豊かさの表れであると評価される。生まれながらの性格、能力、幼児時の育ち、教育など、どうして興味の対象、関心を抱く対象が決まるかは 今後の大きな課題である。 一般には、関心や愛情はどんどん深まって、成長、発展する性格があり、人生の晩年までには名人や、達人の域にまで成長する例は世に多い。 多くの数学者が、子供の頃将棋や碁で遊んでいたなどの話しを交わしたことが有るが、興味深い例である。一流のスポーツマン、イチロー選手などいろいろな有名選手の生い立ちと名前が思い出される。
愛を抱く、興味を持つ、関心を持つは、人間らしい人間を育てる基本であるから、知識偏重、詰み込み教育ではなくて、 みずみずしい愛、意欲が湧く、情念が生命力とともに湧いてくるような 全人的な教育が大事ではないだろうか。
心身を大事にすることともに、真理、真智を愛する精神こそ、大事ではないだろうか。
何のために、何故か? ― 人間らしい、人生を送るためにである。
以 上
再生核研究所声明161(2014.5.30)
ゼロ除算から学ぶ、数学の精神 と 真理の追究
(5月28日、宿舎から研究室に向っているとき、芝生の先に 木立ちが有り、その先に 入り江が見える情景を見て、エデンの花園のように感じた. そして、この声明の原案とエデンの花園の声明構想が閃いた。)
ゼロで割るを グーグルで調べると、2014.5.28.13:35現在
Cerca de 2 980 000 resultados (0,41 segundos) Resultados da procura
1. ゼロ除算 - Wikipedia
ja.wikipedia.org/wiki/ゼロ除算
Traduzir esta página
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定に ...
算数的解釈 - 初期の試み - 代数学的解釈 - ゼロ除算と極限
2. 数学で「A÷0」(ゼロで割る)がダメな理由を教えてください ...
detail.chiebukuro.yahoo.co.jp › ... › 数学
Traduzir esta página
14/05/2007 - maru_i_nekoさん. 答えが ないから。 たとえばー 5÷0=Bとしましょうか。B×0=いくつに なりますか。 ゼロですよね。 とゆーことは、Bはゼロ?と思っちゃいますが、それだったらゼロ×ゼロが 5になってしまいます。おかしいですよね。
となっていて、290万件あるが、非常に当たり前の議論が多く、いわば、常識的な議論が多く、考え方などが幼稚であると考えられる。なを、6番目に再生核研究所の最近の成果が述べられている:
1. 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る ...
Traduzir esta página
Yoshinori Saito
21/04/2014 - 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方 再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱い ...
そこで、 その問題から、 数学的な考え方と、創造的な精神について触れたい。
まず、どうしてゼロで割れないのか、という疑問が、繰り返し問われているが、これは世に問われている多くの問題、神の問題などと同様に、論理的に 発想そのものが 相当おかしな議論と言える。
これは、割り算の定義をしっかりさせないで、ふらふら議論している、神の定義もしないで、神のことについていろいろ議論を繰り返している。問題にしている、問題の意味を理解しないで、論じている訳であるから、まことに奇妙な議論であるが、世に多いと言える。注意したい。( 逆に言えば、難しい問題とは、問題の意味さえ分からないとも言える)。
次に、真面目に議論して、割り算、分数の定義に基づいて、 不可能である という議論が多い。それは、それで正しいが、ここで、重要な数学の考え方を指摘したい。
数学で不可能である、できないということは、数学のそういっている数学の理論体系では不可能であるといっている事実である。 数学上の不可能は、そういっている理論体系では 不可能であることをいっている。これは、裏からみれば、それを可能にする理論体系、数学が、考え方が、有るかも知れない という発想に繋がる。上記、グーグル、あるいは人類の歴史上、そのように発想しなかったのは、人類の愚かさであり、永い間の盲点であったと言える。― 実際、数学者が、可能にする考えは無いか と問うのは当たり前のことであるが、ゼロ除算は できないという、 先入観で考えなかったのではないだろうか。 しかし、 その問題は、物理学では ブラックホール現象や、ニュートンの万有引力の法則に 深刻な問題を提起してきている、事実もある。― 実際に、自然に割り算の定義を拡張して、簡潔な結果、ゼロで割れば、何時でもゼロであるという結果が導かれた。それらは、高校生レベルの数学で十分であった:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
数学については、上記声明の中で、発見の詳しい状況、位置づけなどについても触れているが、 新しい結果は、予想できない、驚嘆すべき結果を述べている。複素解析学では、1/0 は無限遠点、無限と考えられており、実数でも ゼロを小さな正か、 負の数でゼロに近づくと考えれば、正の無限大や、負の無限大に発散すると考えるのが、世の常識である。 それが突然、ゼロであるとして、強力な不連続性を示しているからである。 上記声明の中で、世に有る爆発や接触などの強力な不連続性を示す、 基本的な現象の型を与えるのではないかとの明るい、予想を展開している。 ここで、触れたいのは、全く、新規な現象が現れたときの 我々の取り組む姿勢、精神の問題である。
まず、人間とは何者であるかを確認したい:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
人間は何でも知りたい、究めたい、それが本能である。 しかしながら、そんなのはつまらない現象であると理解して、考えない英明な方は、それも もちろん良いのであるが、いろいろ考えると楽しいと想像するのが、真理を追究する人間の姿勢に合っているのではないだろうか。ユニバースには 何でもありで、いろいろ裏があると考える方が、人生や研究を豊かにするのではないだろうか。 ユニバースと数学は どのように成っているのか、知りたいと考える。
新しい割り算の意味の位置づけ、評価は 世界史が明らかにするわけであるから、どのような影響を 世界史に与えるかは、もちろん、直ぐには分らない(再生核研究所声明 41: 世界史、大義、評価、神、最後の審判)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
以 上
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱いた日としているので、まだ、3か月足らずである。
簡潔に回想して、問題点と今後について、考察し、今後を構想したい。
まず、あまりにも基本的な問題で、全く予期しない それこそ驚嘆すべき結果なので、茫然としてこれは何だと、あたかも憑かれたかのように夢中で取り組み、相当な研究者、共同研究者と交流し、相当なメールと印刷部が溜まっている。経過、成果などきちんとしておくべきと考えて、2か月で、2つの論文の出版を確定させて、ちょうど良いタイミングもあって、一つは4月早々に既に出版されている。
まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。 出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、
関数 y = 1/x のグラフは、原点で ゼロである
と宣言している。すなわち、 1/0=0 である。
グラフを想像して、そんな馬鹿な、信じられない、そのようなことは考えるべきではないとは、結構な数学者の真面目な意見であった。 そこで、
その実態を追及して、ムーア・ペンローズ一般逆の考えがあることを認識して、いわば奇妙な、変な逆として、分数を拡張しているが、永年研究してきた チコノフ正則化法の神秘力 によってそれらは 数の実体である と認識した。
との信念を持って研究を進め、共同研究者には、割り算の意味から、当たり前だとか、計算機は(:アルゴリズムは)そのように解釈する、物理的な楽しい説明さえ現れて、実数の場合には 論文も出版されたこともあり、既に当たり前で 今後 物理的な応用などに関心が移っている。― 要点は、上記双曲線は、原点で猛烈な非連続性を有し、爆発や衝突、駒で言えば、 中心の特異性などの現象を記述していることが分った。
上記2件の論文出版の確定をみて、4月1日:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。
として、公表して 複素解析に取り掛かった。
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、容易に進められる状況ではない。
念をおしたいのは、 ゼロで割る新しい結果は、従来の数学に 何ら矛盾するものでは、なく、従来ゼロで割るときに避けてきたところに、ある種の新しい結果が得られるということである (複素解析学では、無限遠点が有るので、少し意味あいが変わる)。 すなわち、 従来の数学に、新しい数学が加わると言うことである。その新しい数学が、実が有って、物理的な意味や、従来の数学に好ましい影響を与えるかは、多くは、今後の問題である。ある変な島を発見した。つまらなそうだから、関心ないは 当然有り得る態度である。
そこで、今後の姿勢は、世界観の問題に大きく影響されるのではないだろうか。ゼロで割ればゼロになり、割り算を自然に拡張すれば、それに限るという、何か裏に大きな、凄い世界が有るのではないだろうか、と構想している。― 1/0 は 無限大、無限遠点である、それは良く分る、しかしながら、無限大、無限遠点は 数ではないではないか、矛盾ではないか? 他方、数学は 1/0=0と一意に定めている、何か有るのではないだろうか? どうして、南極と北極がくっ付いているのか? どうして、原点と無限遠点がくっ付いているのか? 神の 人類に対する意地悪、隠しごと? 人類の知能検査か?
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
非ユークリッド幾何の世界―幾何学の原点をさぐる (ブルーバックス)/寺阪 英孝
¥945
Amazon.co.jp
ユークリッド原論を読み解く ~数学の大ロングセラーになったわけ~ (数学への招待)/吉田 信夫
¥1,814
Amazon.co.jp
幾何への誘い (岩波現代文庫―学術)/小平 邦彦
¥929
Amazon.co.jp
幾何学基礎論 (ちくま学芸文庫)/D. ヒルベルト
¥1,296
Amazon.co.jp
ユークリッド『原論』とは何か―二千年読みつがれた数学の古典 (岩波科学ライブラリー)/斎藤 憲
¥1,404
Amazon.co.jp
ユークリッド原論 追補版/著者不明
¥6,480
Amazon.co.jp
ユークリッドの窓~平行線から超空間にいたる幾何学の物語/レナード・ムロディナウ
¥1,944
Amazon.co.jp
0 件のコメント:
コメントを投稿