2014年8月5日火曜日

位取り記数法(くらいどりきすうほう)

位取り記数法
位取り記数法(くらいどりきすうほう)は、数の表現方法の一種で、適当な自然数 N (> 1) を指定して N 種類の記号(数字)を用意し、それを列べることによって数を表すための規則である。
位取り記数法で指定された自然数 N をこの記数法の底(てい)または基数といい、底が N であるような位取り記数法を「N 進法」「N 進記数法」という。N 進法では、N 種類の数字からなる記号列において、隣り合う上位の桁(けた)に下位の桁の N 倍の意味を持たせる位取りによって数を表現する。
数を N 進法で表記することを「N 進表記」という。また、N 進表記された数という意味で「N 進数」という呼称を使用することもある。
N 進法の表記において正負や小数を表現する場合には、符号や小数点が併用される。
日常的に最多用されている記数法は十進法である。また、時間は三百六十単位を基本にして、十二単位、三十単位、六十単位の組合わせで表現され、場合によってはこれらの累乗数(十二進法、六十進法。三十進法は今の所使われていない)が用いられる。
目次 [非表示]
1 概説
2 自然数の表記
2.1 例
3 整数の表記
4 有理数・実数の表記
4.1 小数の表記
4.2 底の変換
5 p進数
6 関連項目
7 参考文献
概説[編集]
日常用いられている、十倍ごとに位をとる数の表記法は十進法と呼ばれ、零から九までの十通りの数値については、それぞれを表す 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 というような専用の文字(数字)が用意されている。そして 9 より一だけ大きい十を一文字で表記せず、1 と 0 の二文字を組み合わせて 10 と桁を上げて表記する。
同時に二文字の数字を使えば、00 から 99 まで百通り(十の平方)の数を表現することができる。99 より大きな数を表現するには、更にもう一文字(桁)増やして、100 と表記する(この表記法は 0 が発見されてから可能になった)。
このように、十種類の文字を列べて十通りの数を一桁で表し、百通りの数を二桁で、千通りの数を三桁で、というように十の N 乗通りの数を N 桁で表すのが十進法である。十進表記で記された数を十進数と呼ぶ流儀もある。
ここで、「十」という数を二に変えると二進法に、二十に変えると二十進法になる。例えば、二十進法では普通、0 から 9 までの数字十種類と、A から J までのアルファベット十種類、合わせて二十種類の文字を共に数字として扱い、数を表現する。例えば、十進法では 15 と二桁で表記される数も、二十進法では F と一文字で表記できる。
逆に、八進法では 0 から 7 までの八種類の文字を数字として扱い数を表現するので、十進法で 8 と書き表される数は、八進法では 10 と表され、二桁を必要とする。
自然数の表記[編集]
任意の自然数 T に対し、r を十分大きく取れば、
T = c_0\cdot 1 + c_1N + c_2N^2 + \dots + c_rN^r
を満たし、各 ci は 0, 1, 2, 3, ..., N - 1 のいずれかであるような {ci} を一意的に取ることができる。
実際、次のようにすれば {ci} と r を求めることができる(底変換アルゴリズム)。
T を N で割った商を T1 とし、余りを c0 とする。
T1 を N で割った商を T2 とし、余りを c1 とする。
以下 Ti を N で割った商を Ti+1 とし、余りを ci とする操作を繰り返す。
Tk = 0 となったとき、r = k - 1 とする。
このとき、0 から N - 1 までの自然数に何らかの記号(数字)を対応させておいて、 cr, cr-1, ..., c1, c0 に対応する記号を順に並べれば、任意の自然数 T を有限個の記号で表記できる。この表記を T の N 進表記 という。
なお、上記の方法ではアルゴリズムが終了するまで r が幾つになるか分からないが、対数を用いれば
\left\lfloor\log_N T\right\rfloor
として事前に r を知ることもできる。ただし、
\lfloor x\rfloor
は x 以下で最大の整数である(床関数参照)。
二進表記 三進表記 六進表記 十進表記 十二進表記
1 1 1 1 1
10 2 2 2 2
11 10 3 3 3
100 11 4 4 4
101 12 5 5 5
110 20 10 6 6
111 21 11 7 7
1000 22 12 8 8
1001 100 13 9 9
1010 101 14 10 A
1011 102 15 11 B
1100 110 20 12 10
例[編集]
十進表記の 5213 を五進表記に置き換える場合:
5213 ÷ 5 = 1042 余り 3
1042 ÷ 5 = 208 余り 2
208 ÷ 5 = 41 余り 3
41 ÷ 5 = 8 余り 1
8 ÷ 5 = 1 余り 3
1 ÷ 5 = 0 余り 1
から、5213 = 3 + 2 × 5 + 3 × 52 + 1 × 53 + 3 × 54 + 1 × 55 となるので、五進表記では 131323 と表すことができる。また、55 = 3125, 56 = 15625 であるから、55 ≤ 5213 < 56 が成り立っているので、対数を取ると
5 \le \log_{5}5213 < 6
となり、
r=\left\lfloor\log_{5}5213\right\rfloor =5
が分かる。
二百七十の表記は、以下のとおりになる。(便宜上、計算式を十進表記で記す)
二進表記 (100001110)2 : 270 = 256 + 14 = 28 + 23 + 22 + 21
六進表記 (1130)6 : 270 = 216 + 54 = 1×63 + 1×62 + 3×61
十進表記 27010 : 270 = 200 + 70 = 2×102 + 7×101
十二進表記 (1A6)12 : 270 = 144 + 126 = 1×122 + 10×121 + 6
二十進表記 (DA)20 : 270 = 260 + 10 = 13×201 + 10
また、500 と表記される数は、十進表記では五百だが、十二進表記では七百二十を、二十進表記では二千を意味する。
これは、十二進表記では「五倍の百四十四(=十二の平方)」を意味し、二十進表記では「五倍の四百(=二十の平方)」を意味するからである。したがって、十二進表記の“500 ÷ 26 = 20”は、十進表記では“720 ÷ 30 = 24”となる。
整数の表記[編集]
T が負の数である場合には 記号列の先頭に負符号 - を付けて、その後に絶対値 |T| の N 進表記を続けることにすれば、任意の整数を同様にして表記できる。
二進表記 三進表記 六進表記 十進表記 十二進表記
-110 -20 -10 -6 -6
-101 -12 -5 -5 -5
-100 -11 -4 -4 -4
-11 -10 -3 -3 -3
-10 -2 -2 -2 -2
-1 -1 -1 -1 -1
0 0 0 0 0
有理数・実数の表記[編集]
小数の表記[編集]
任意の有理数・実数は
a_l N^l + a_{l-1} N^{l-1} +\cdots +a_1 N+a_0 +\frac{a_{-1}}{N} +\frac{a_{-2}}{N^2} +\cdots
(各位の ai は 0 以上 N 未満の整数)の形に一意的に表される。これを N 進法では(0 以上 N 未満の整数にそれぞれ記号を与えて)
a_l a_{l-1} \ldots a_1 a_0 .a_{-1} a_{-2} \ldots
と表記する。
十進表記 十二進表記 二十進表記
1 ÷ 2 0.5 0.6 0.A
1 ÷ 3 0.3333… 0.4 0.6D6D…
1 ÷ 4 0.25 0.3 0.5
1 ÷ 5 0.2 0.2497… 0.4
例えば、二進法で 0.111 と表される数は、零、二分の一、四分の一、八分の一を加えた数という意味である。
0+1\times \frac{1}{2} +1\times \frac{1}{4} +1\times \frac{1}{8} =\frac{7}{8}
この値は、十進法では 0.875 と表される。
底の変換[編集]
十進法で表された絶対値が1未満の小数をN進法に変換する場合、次の通りにする。
Nを掛け、整数部と小数部に分ける。
その小数部にNを掛け、再度整数部と小数部に分ける。
小数部が0になるまで同様の操作を繰り返す。
整数部を上位から並べる。
例えば十進表記の 0.8125 を2進表記にする場合、
0.8125 × 2 = 1.625 = 0.625 + 1
0.625 × 2 = 1.25 = 0.25 + 1
0.25 × 2 = 0.5 = 0.5 + 0
0.5 × 2 = 1.0 = 0.0 + 1
となるので、2進表記では 0.1101 となる。
p進数[編集]
詳細は「p進数」を参照
N 進表記と関連が深い概念として、素数 p 毎に定まる p 進数というものもある。 両者は別概念ではあるが非常に関連があり、整数の p進表記を(可算)無限桁の自然数の範囲に拡張したものが p進整数で、さらにそこに有限桁の小数部分を許したものが p進数である。ただし「無限桁の整数」(の一部は有理数として再解釈できるもののほとんど)は本稿で扱う普通の数(実数)とは異なる。
関連項目[編集]
広義の記数法 - 底が実数や複素数の場合について
命数法
一進法
二進法
三進法
五進法
六進法
八進法
十進法
十二進法
十五進法
十六進法
二十進法
二十四進法
六十進法
コンピュータの数値表現
参考文献[編集]
ヘンリー・S・ウォーレン、ジュニア『ハッカーのたのしみ』 ISBN 4434046683
再生核研究所声明171(2014.7.30)
掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
(2014.7.11小柴誠一、山根正巳氏との会合で、道脇裕氏の 割り算と掛け算は別であり、ゼロ除算100/0=0は自明であるとの考えを分析して得た考えを纏めたものである。)
ゼロ除算100/0=0は2014.2.2 偶然に論文出筆中に 原稿の中で発見したものである。チコノフ正則化法の応用として、自然に分数、割り算を拡張して得られたものであるが、歴史上不可能であるとされていること、結果がゼロであると言う意味で、驚嘆すべきことであること、さらに、高校生から小学生にも分る内容であると言う意味で、極めて面白い歴史的な事件と言える。そればかりか、物理学など世界の理解に大きな影響を与えることも注目される。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
しかるに いろいろな人たちと広く議論しているところであるが、世界の指導的な数学者でさえ、高校生でも理解できる発表済みの論文 その後の結果について、現代数学の常識を変えるものであり、受け入れられない、と言ってきている。まことに不思議なことであり、如何に驚くべき結果であるかを示していると言える。
多くの数学者は、内容を理解せず、100/0=0 は100=0 x 0 =0 で矛盾であると即断している。しかるに論文は 100/0 は 割り算の意味を自然に拡張するとゼロの結果を得るのであって、ゼロ除算の結果は 100=0 x 0 =0を意味しないと説明している。 逆に、無限大、無限遠点は数と言えるかと問うている。
ところが面白いことに 既に3月18日付文書で、道脇裕氏は 掛け算と割り算は別であり、ゼロ除算100/0は 自明であると述べていた。しかし、その文書は、一見すると
矛盾や間違いに満ちていたので、詳しく分析してこなかった。しかるに上記7月11日の会合で、詳しい状況を聞いて、道脇氏の文書を解読して、始めて道脇氏の偉大な考えに気づいた。結論は、ゼロ除算100/0は分数、割り算の固有の意味から、自明であると言うことである。これはチコノフ正則化法や一般逆とは関係なく、分数、割り算の意味から、自明であるというのであるから、驚嘆すべき結果である。千年を越えて、未明であった真実を明らかにした意味で、極めて面白い知見である。またそれは、割り算が掛け算の逆であり、ゼロ除算は不可能であるという長い囚われた考えから、解放した考えであると評価できる。
原理は日本語の表現にあるという、掛け算は 足し算で定義され、割り算は 引き算で定義されるという。割り算を考えるのに 掛け算の考えは不要であるという。
実際、2 x3 は 2+2+2=6と繰り返して加法を用いて計算され、定義もできる。
割り算は、問題になっているので、少し詳しく触れよう。
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるかと考え、いまは 50 回引いてゼロになるから分数は50であると考える。100を2つに分ければ50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。a がゼロでなければ、分数b/aは 現代数学の定義と同じに定義される。
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、
100割るゼロはゼロ、すなわち、100/0=0である。(ここに、絶妙に面白い状況がある、0をどんどん引いても変わらないから、無限回引けると解釈すると、無限とも解釈でき、ゼロ除算は 0と無限の不思議な関係を長く尾を引いている。)
同様に0割る0は ゼロであること0/0=0が簡単に分かる。
上記が千年以上も掛かったゼロ除算の解明であり、 ニュートンやアインシュタインを悩ましてきたゼロ除算の簡単な解決であると 世の人は、受けいれられるであろうか?
いずれにしても、ゼロ除算z/0=0は  既に数学的に確定している と考えられる。そこで、結果の 世への影響 に関心が移っている。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/

0 件のコメント:

コメントを投稿