ゼロ除算
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。
コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。他には、例外が起きてプログラムの中断を引き起こすかもしれないし、例えばナイーブに取尽し法を実行しようとしたなら無限ループに陥るか、なんらかの最大値のようなものが結果となるかもしれない。
計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため不可能である。
目次 [非表示]
1 算数的解釈
2 初期の試み
3 代数学的解釈
3.1 ゼロ除算に基づく誤謬
4 ゼロ除算と極限
5 コンピュータにおけるゼロ除算
6 ポップカルチャー
7 脚注
8 参考文献
9 関連項目
10 外部リンク
算数的解釈[編集]
算数レベルでは、除算は何らかの物の集合をそれぞれ同数になるように分けることで説明される。例えば、10個のリンゴを5人で分ける場合、各人は 10⁄5 = 2個のリンゴを受け取ることになる。同様に、10個のリンゴを1人で分ける場合、各人は 10⁄1 = 10個のリンゴを受け取る。
この考え方を使ってゼロ除算を説明できる。10個のリンゴを0人で分けるとする。各人は何個のリンゴを受け取るだろうか? 10⁄0 を計算しようとしても、元の設問自体が無意味なので無意味となる。この場合、各人が受け取る個数は、0個でも、10個でも、無限個でもない。なぜなら、元々受け取るべき人はいないからである。以上のように算数レベルで考える場合、ゼロ除算は無意味または未定義となる。
ゼロ除算の未定義性を理解する別の方法として、減法の繰り返し適用という考え方がある。すなわち、余りが除数より少なくなるまで除数を繰り返し引くのである。たとえば 13 割る 5 を考えると、13 から 5 は 2 回引くことができ、余りは 3 となる。結果は 13⁄5 = 2 あまり 3 などと記される。ゼロ除算の場合、ゼロを何度引いても余りがゼロより小さくなることはないため、無限に減法を繰り返すだけとなる。
初期の試み[編集]
628年にブラーマグプタが著した『ブラーマ・スプタ・シッダーンタ』では、0 を数として定義し、その演算結果も定義している。しかし、ゼロ除算の説明は間違っていた。彼の定義に従うと代数的不合理が生じることを簡単に証明できる。ブラーマグプタによれば、次の通りである。
「正または負の数をゼロで割ると、分母がゼロの分数となる。ゼロを正または負の数で割ると、ゼロになるか、またはゼロを分子とし有限数を分母とする分数になる。ゼロをゼロで割るとゼロになる」
830年、マハーヴィーラはブラーマグプタの間違いを著書 『ガニタ・サーラ・サングラハ』で以下のように訂正しようとして失敗した。
「数はゼロで割っても変化しない」
バースカラ2世は n⁄0 = ∞ と定義することで問題を解決しようとした。この定義はある意味では正しいが、後述の「ゼロ除算と極限」に示す問題もあり、注意深く扱わないとパラドックスに陥る。このパラドックスは近年まで考察されなかった[1]。
代数学的解釈[編集]
ゼロ除算を数学的に扱う自然な方法は、まず除算を他の算術操作で定義することで得られる。整数、有理数、実数、複素数の一般的算術規則では、ゼロ除算は未定義である。体の公理体系に従う数学的体系では、ゼロ除算は未定義のままとされなければならない。その理由は、除法が乗法の逆演算として定義されているためである。つまり、a⁄b の値は、bx = a という等式を x について解いたときに値が一意に定まる場合のみ存在する。さもなくば、値は未定義のままとされる。
b = 0 のとき、等式 bx = a は 0x = a または単に 0 = a と書き換えられる。つまりこの場合、等式 bx = a は a が 0 でないときには解がなく、a が 0 であれば任意の x が解となりうる。いずれにしても解は一意に定まらず、a⁄b は未定義となる。逆に、体においては a⁄b は b がゼロでないとき常に一意に定まる。
ゼロ除算に基づく誤謬[編集]
ゼロ除算を代数学的記述に用いて、例えば以下のように 1 = 2 のような誤った証明を導くことができる。
以下を前提とする。
0 \times 1 = 0\quad
0 \times 2 = 0\quad
このとき、次が成り立つ。
0 \times 1 = 0 \times 2
両辺をゼロ除算すると、次のようになる。
\textstyle \frac{0}{0}\times 1 = \frac{0}{0}\times 2
これを簡約化すると次のようになる。
1 = 2\quad
この誤謬は、暗黙のうちに 0⁄0 = 1 であるかのように扱っていることから生じる。
上の証明が間違いであることは多くの人が気づくと思われるが、これをもっと巧妙に表現すると間違いを分かりにくくできる。例えば、1 を x と y に置き換え、ゼロを x - y、2 を x + y で置き換える。すると上記の証明は次のようになる。
(x-y)x = x^2-xy = 0
(x-y)(x+y) = x^2-y^2 = 0
したがって、
(x-y)x = (x-y)(x+y)
両辺を x - y で割ると次のようになる。
x = x+y
x = y = 1 を代入すると、次のようになる。
1 = 2
ゼロ除算と極限[編集]
関数 y = \textstyle\frac{1}{x} のグラフ。x が 0 に近づくと、y は無限大に近づく。
直観的に a⁄0 は a⁄b で b を 0 に漸近させたときの極限を考えることで定義されるように見える。
a が正の数の場合、次のようになる。
\lim_{b \to 0^{+}} {a \over b} = {+}\infty
a が負の数の場合、次のようになる。
\lim_{b \to 0^{+}} {a \over b} = {-}\infty
したがって、a が正のとき a⁄0 を +∞、a が負のとき -∞ と定義できるように思われる。しかし、この定義には2つの問題点がある。
第一に、正と負の無限大は実数ではない。実数の範囲内で考えたい場合、この定義には意味がない。この定義を使いたければ、何らかの形で実数を拡張する必要がある。
第二に、右側から極限に漸近するのは恣意的である。左側から漸近して極限を求めた場合、a が正の場合に a⁄0 が -∞ となり、a が負の場合に +∞ となる。これを等式で表すと次のようになる。
- \infty = \frac{1}{0} = \frac{1}{-0} = -\frac{1}{0} = -\infty
このように、+∞ と -∞ が等しいことになってしまい、これではあまり意味がない。これを意味のある拡張とするには、「符号のない無限大」という概念を導入するしかない。
実数に、正負の区別が有る、あるいは無い、無限大が含まれるように拡張したものが拡大実数である。アフィン拡大実数では区別が有り、射影拡大実数では区別が無い(無限遠点)。
物理学においてはブラックホールや宇宙の始まりを考察するさいに質量/体積(密度)の体積が0となる特異点が発生するためゼロ除算による無限大発散の難問が生じている。この場合質量・体積は正であるため正の無限大への発散となる。
直接のゼロ除算以外では、三角関数のtan90°などの計算においても、同様の問題が生じてしまう。
0⁄0 についても、極限
\lim_{(a,b) \to (0,0)} {a \over b}
は存在しないため、うまく定義できない。さらに一般に、x が 0 に漸近すると共に f(x) も g(x) も 0 に漸近するとして、極限
\lim_{x \to 0} {f(x) \over g(x)}
を考えても、これは任意の値に収束する可能性もあるし、収束しない可能性もある。したがって、この手法では 0⁄0 について意味のある定義は得られない。
コンピュータにおけるゼロ除算[編集]
SpeedCrunchという電卓ソフトでゼロ除算を実行したときの様子。エラーが表示されている。
現在のほとんどのコンピュータでサポートされているIEEE 754 浮動小数点に関する標準規格では、全ての浮動小数点演算を定義している。ゼロ除算も例外ではなく、どういう値になるかが定義されている。IEEE 754の定義によれば、a/0 で a が正の数であれば、除算の結果は正の無限大となり、a が負の数であれば負の無限大となる。そして、a も 0 であった場合、除算結果は NaN(not a number、数でない)となる。IEEE 754 には -0 も定義されているため、0 の代わりに -0 で除算をした場合は、上述の符号が反転する。
整数のゼロ除算は通常、浮動小数点とは別に処理される。というのは整数ではゼロ除算の結果を表す方法がないためである。 多くのプロセッサは整数のゼロ除算を実行しようとすると例外を発生させる。この例外に対する対処がなされていない場合、ゼロ除算を実行しようとしたプログラムは強制終了(アボート)される。これは、ゼロ除算がエラーと解釈されるためで、エラーメッセージが表示されることも多い。
1997年、民生品の応用を研究していたアメリカ海軍はタイコンデロガ級ミサイル巡洋艦ヨークタウンを改造して主機のガスタービンエンジンの制御にマイクロソフト社のソフトウェアを採用したが、試験航行中にデータベースのゼロ除算が発生してソフトウェアが例外を返し、結果として主機が停止、回復するまでカリブ海を2時間半ほど漂流する事態となっている[2]。
ポップカルチャー[編集]
"OH SHI-"―ゼロ除算がコンピュータや電卓でエラーを引き起こす様を宇宙の終焉などに結びつけた英語の口語表現。「Oh shit!」と最後まで言い切る前に宇宙は破壊されてしまう[3]。
テッド・チャンの短篇に Division by Zero(ゼロで割る)という題名のものがある。
北米発祥のジョーク、チャック・ノリス・ファクトによれば、「チャック・ノリスはゼロ除算ができる」という真実(ファクト)がある[4]。
脚注[編集]
^ J J O'Connor and E F Robertson (2000年11月). “Zero”. 2008年11月16日閲覧。
^ “Sunk by Windows NT”. (1998年7月24日) 2008年11月16日閲覧。
^ “oh shi-”. Urban Dicthionary. 2011年10月11日閲覧。
^ “Chuck Norris can divide by zero”. Chuck Norris Facts. 2011年10月11日閲覧。
参考文献[編集]
Jakub Czajko (July 2004) "On Cantorian spacetime over number systems with division by zero", Chaos, Solitons and Fractals, volume 21, number 2, pages 261—271.
Ben Goldacre. “Maths Professor Divides By Zero, Says BBC”. 2008年5月8日閲覧。ゼロ除算の結果を nullity という新たな記号で表す方法が提唱された。http://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%AD%E9%99%A4%E7%AE%97
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱いた日としているので、まだ、3か月足らずである。
簡潔に回想して、問題点と今後について、考察し、今後を構想したい。
まず、あまりにも基本的な問題で、全く予期しない それこそ驚嘆すべき結果なので、茫然としてこれは何だと、あたかも憑かれたかのように夢中で取り組み、相当な研究者、共同研究者と交流し、相当なメールと印刷部が溜まっている。経過、成果などきちんとしておくべきと考えて、2か月で、2つの論文の出版を確定させて、ちょうど良いタイミングもあって、一つは4月早々に既に出版されている。
まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。 出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、
関数 y = 1/x のグラフは、原点で ゼロである
と宣言している。すなわち、 1/0=0 である。
グラフを想像して、そんな馬鹿な、信じられない、そのようなことは考えるべきではないとは、結構な数学者の真面目な意見であった。 そこで、
その実態を追及して、ムーア・ペンローズ一般逆の考えがあることを認識して、いわば奇妙な、変な逆として、分数を拡張しているが、永年研究してきた チコノフ正則化法の神秘力 によってそれらは 数の実体である と認識した。
との信念を持って研究を進め、共同研究者には、割り算の意味から、当たり前だとか、計算機は(:アルゴリズムは)そのように解釈する、物理的な楽しい説明さえ現れて、実数の場合には 論文も出版されたこともあり、既に当たり前で 今後 物理的な応用などに関心が移っている。― 要点は、上記双曲線は、原点で猛烈な非連続性を有し、爆発や衝突、駒で言えば、 中心の特異性などの現象を記述していることが分った。
上記2件の論文出版の確定をみて、4月1日:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。
として、公表して 複素解析に取り掛かった。
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、容易に進められる状況ではない。
念をおしたいのは、 ゼロで割る新しい結果は、従来の数学に 何ら矛盾するものでは、なく、従来ゼロで割るときに避けてきたところに、ある種の新しい結果が得られるということである (複素解析学では、無限遠点が有るので、少し意味あいが変わる)。 すなわち、 従来の数学に、新しい数学が加わると言うことである。その新しい数学が、実が有って、物理的な意味や、従来の数学に好ましい影響を与えるかは、多くは、今後の問題である。ある変な島を発見した。つまらなそうだから、関心ないは 当然有り得る態度である。
そこで、今後の姿勢は、世界観の問題に大きく影響されるのではないだろうか。ゼロで割ればゼロになり、割り算を自然に拡張すれば、それに限るという、何か裏に大きな、凄い世界が有るのではないだろうか、と構想している。― 1/0 は 無限大、無限遠点である、それは良く分る、しかしながら、無限大、無限遠点は 数ではないではないか、矛盾ではないか? 他方、数学は 1/0=0と一意に定めている、何か有るのではないだろうか? どうして、南極と北極がくっ付いているのか? どうして、原点と無限遠点がくっ付いているのか? 神の 人類に対する意地悪、隠しごと? 人類の知能検査か?
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
(本当に面白い、中国茶。研究室に来る途中、 ちょうど、2014.5.5.8:00です。考えがひとりでにわきました。知りたい神の意志です。例の数学ですね。 どうして、無限遠点とゼロ点が 一致しているかです。作文が出来そうです。)
ゼロで割ることの一般化について、発見して3か月目に
100/0=0,0/0=0 誕生日(2014.2.2) 3か月:
足し算、引き算、掛け算は 何時もできる。 割り算はゼロで割ることが出来なかった。ゼロで割ればゼロになる、良い、自然な解釈を発見して、ちょうど3か月になる。ゼロで割る数学は 爆発、衝突などの特異現象を記述しているが、複素解析学では、従来の、無限遠点に対して、ゼロを対応させるべきとして、とんでもない現象を示している。
と記述し、詳しい経過
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
や その後の経過、内容についても纏めている:
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
5日朝 ひとりでにわいた、新鮮な想いをできるだけ多くの人に、その奇妙な現象を表現して、世界の理解を深めたい。― 神も 世界も かすかにしか、感じられない - しかしながら ― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
述語やグラフに馴染みの薄い方は、下記注でインターネットなどで確認、 補充して下さい。要するに、 直角双曲線y=1/xのグラフも 立体射影における北極(無限遠点) も ゼロで割る考えの自然な一般化は 原点でゼロ、1/0=0, z/0=0 と 数学はなっている。十分な一般化でも、それ以外には考えられないとなっている。ところが、1変数複素解析学を実現させる立体射影では、複素数の世界では、1/0は 無限遠点として、球の北極を考えるのが世界の常識で、複素解析学の教科書、学術書は全て、現在そうなっている。そこで、発見された新しい概念に基づいて、そこに問題を提起し、無限遠点、無限は数ではないのではないか、おかしいのではないか と述べている。 他方、1/0=0 は割り算の概念を越えて、関数y=1/xとW=1/zが それぞれ、実数全体や複素数全体を 1対1に ちょうど対応させるなど 極めて自然な性質を有する。
しかしながら、ここで、極めて、面白い現象が起きている。 双曲線でも、球でも、原点の近くで、無限の彼方にとんでいるのに、原点で、突然ゼロに戻っているという、驚嘆すべき現象である。この驚嘆すべき不連続性のために、ゼロで割る新しい考えは受け入れられないと 人は思うだろうか?
逆に、その特異性こそ、ゼロで割ることの本質、要点であり、神の意志、思わせぶりが出ていると考えるべきか?
ビッグバン現象、接触現象、生と死の一致、永劫回帰の思想、ユニバースは 一体どうなっているのか (神の意志) と、そのからくり、 どうなっているのか しきりに 切に 知りたい。
天動説が地動説に変わったように、何時か、この強烈な不連続性を、ユニバースの常識と捉える時代が来るだろうか。それとも 神の気まぐれに 終わるだろうか。
注:
1. 直角双曲線
www.sist.ac.jp/.../chokkaku_sokyokusen.html
Traduzir esta página
反比例の関係を表すxy=k(k≠0)のような関係をx軸y軸平面に描くと、図のような直角双曲線となる。 kの値によって違う線となるが、いずれもx=0(y軸)とy=0(x軸)に限り ...
ステレオ投影:ウィキペディアより
数学的な定義
単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
0 件のコメント:
コメントを投稿