2014年10月15日水曜日

0以外のときに除算するには・#DIV/0!エラーが表示されないようにするには-IF関数

0以外のときに除算するには・#DIV/0!エラーが表示されないようにするには-IF関数
対象:Excel2002, Excel2003, Excel2007, Excel2010
このサイト・インストラクターのネタ帳で、同じIPアドレスから連続して
「#DIV/0!エラー」
「エクセル 0以外のときのみ除算」
といった検索が行われているのに気づきました。
まだExcelをバリバリ使いこなしている、とはいえないレベルの方なのだとは思いますが、この検索を行うまで自力で辿り着けたということは、きっとすぐにExcelを使いこなせるようになれる方なんじゃないかと思える検索です。
Excelでは「0」(ゼロ)で除算・割り算をすると#DIV/0!エラーとなります。
先の検索をした方は、#DIV/0!エラーが「0」で割り算したときに出るエラーだということに気づき、「0」でないときだけ割り算をすれば#DIV/0!エラーは出なくなるだろうということにまで辿り着いたのだと思えます。
#DIV/0!エラーが表示されるという問題が発生して、その原因が「0」による除算であることを推測し、その解決策として「0」でないときだけ除算すればいいということに気づけたということは、素晴らしいことだと感じます。
[スポンサード リンク]

#DIV/0!エラーが表示されないようにするは?
というのはExcelの定番の質問の一つで、こういった処理を行うにはIF関数を使います。
▼操作方法:#DIV/0!エラーが表示されないようにする
※A1セルの値をB1セルで割り算する計算式をC1セルに入力して、B1セルが0のときに#DIV/0!エラーが表示されないようにする例
C1セルに
「=IF(B1=0,"",A1/B1)」
という数式を入力する
IF関数では引数を3つ指定します。
第1引数には論理式
第2引数には第1引数の論理式が当てはまるときにどうするか
第3引数には第1引数の論理式が当てはまらないときにどうするか
をそれぞれ指定します。
上記の「=IF(B1=0,"",A1/B1)」という数式で、第1引数は
「B1=0」
です。比較演算子「=」を使ってB1セルの値と「0」とを比較しています。
意味としては、B1セルの値が「0」であるかどうかという意味で、B1セルの値が「0」ならTRUE、「0」でないならFALSEが返されます。
B1セルが「0」のときには第2引数の「""」(ダブルクォーテーション2つ)、B1セルが「0」でないときには第3引数の「A1/B1」が実行されます。
第2引数に指定された「""」(ダブルクォーテーション2つ)は、Excelでこういった指示をする際の決まった書き方です。
Excelでは文字列を指定するときに「"」(ダブルクォーテーション)で括って指定します。
「""」というのはダブルクォーテーションで何も括られていない状態ですから、何も表示されない状態となります。
第3引数の「A1/B1」は、A1セルの値をB1セルの値で割り算するという意味です。
#DIV/0!エラーが表示されないようにするには上記の
「=IF(B1=0,"",A1/B1)」
とは別の書き方もできます。
「=IF(B1<>0,A1/B1,"")」
でも同じことです。
「B1<>0」
は、B1セルが「0」ではないという意味です。
「<>」は等しくないかどうかを調べる比較演算子で、
「=IF(B1<>0,A1/B1,"")」は、
B1セルが「0」でないときに「A1/B1」
B1セルが「0」でないとき、ではないとき(すなわち、B1セルが「0」のとき)に「""」
を実行しなさいという意味です。
論理式を「B1=0」から「B1<>0」にしたので、先の比較演算子「=」を使った場合とは、第2引数に指定されている内容と第3引数に指定されている内容とが入れ替わっています。
どちらの書き方がいいのかは、最終的に好みになりますが、一般的に二重否定(でないとき、ではないとき)というのは混乱することが多いですから、特にIF関数に慣れないうちは「B1=0」のほうが間違えにくいんじゃないかと思っています。
#DIV/0!エラーが表示されないようにするには、上記のような方法でいいわけですが、ワークシートの作り方によっては他のエラーが表示される可能性もあります。
どんなエラーでも表示されないようにするには、ISERROR関数を使ってください。
また条件付き書式を使ってエラーを見えないようにするという方法もあります。
ISERROR関数を使ったエラー回避や条件付き書式でエラーを見えなくする方法は、Excel初心者の方にとっては、簡単とはいえないものですから、まずは今回ご紹介した
「=IF(B1=0,"",A1/B1)」
という#DIV/0!エラー回避方法に、しっかり慣れていただき、この方法が問題なく使えるようになってから挑戦するのがいいと思います。
関連語句
0以外の除算, #DIV/0!を表示しない, #DIV/0!エラー, エラーの非表示, #DIV0エラーhttp://www.relief.jp/itnote/archives/003712.php

再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。 
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上

再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
(2014.7.11小柴誠一、山根正巳氏との会合で、道脇裕氏の 割り算と掛け算は別であり、ゼロ除算100/0=0は自明であるとの考えを分析して得た考えを纏めたものである。)
ゼロ除算100/0=0は2014.2.2 偶然に論文出筆中に 原稿の中で発見したものである。チコノフ正則化法の応用として、自然に分数、割り算を拡張して得られたものであるが、歴史上不可能であるとされていること、結果がゼロであると言う意味で、驚嘆すべきことであること、さらに、高校生から小学生にも分る内容であると言う意味で、極めて面白い歴史的な事件と言える。そればかりか、物理学など世界の理解に大きな影響を与えることも注目される。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
しかるに いろいろな人たちと広く議論しているところであるが、世界の指導的な数学者でさえ、高校生でも理解できる発表済みの論文 その後の結果について、現代数学の常識を変えるものであり、受け入れられない、と言ってきている。まことに不思議なことであり、如何に驚くべき結果であるかを示していると言える。
多くの数学者は、内容を理解せず、100/0=0 は100=0 x 0 =0 で矛盾であると即断している。しかるに論文は 100/0 は 割り算の意味を自然に拡張するとゼロの結果を得るのであって、ゼロ除算の結果は 100=0 x 0 =0を意味しないと説明している。 逆に、無限大、無限遠点は数と言えるかと問うている。
ところが面白いことに 既に3月18日付文書で、道脇裕氏は 掛け算と割り算は別であり、ゼロ除算100/0は 自明であると述べていた。しかし、その文書は、一見すると
矛盾や間違いに満ちていたので、詳しく分析してこなかった。しかるに上記7月11日の会合で、詳しい状況を聞いて、道脇氏の文書を解読して、始めて道脇氏の偉大な考えに気づいた。結論は、ゼロ除算100/0は分数、割り算の固有の意味から、自明であると言うことである。これはチコノフ正則化法や一般逆とは関係なく、分数、割り算の意味から、自明であるというのであるから、驚嘆すべき結果である。千年を越えて、未明であった真実を明らかにした意味で、極めて面白い知見である。またそれは、割り算が掛け算の逆であり、ゼロ除算は不可能であるという長い囚われた考えから、解放した考えであると評価できる。
原理は日本語の表現にあるという、掛け算は 足し算で定義され、割り算は 引き算で定義されるという。割り算を考えるのに 掛け算の考えは不要であるという。
実際、2 x3 は 2+2+2=6と繰り返して加法を用いて計算され、定義もできる。
割り算は、問題になっているので、少し詳しく触れよう。
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるかと考え、いまは 50 回引いてゼロになるから分数は50であると考える。100を2つに分ければ50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。a がゼロでなければ、分数b/aは 現代数学の定義と同じに定義される。
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、
100割るゼロはゼロ、すなわち、100/0=0である。(ここに、絶妙に面白い状況がある、0をどんどん引いても変わらないから、無限回引けると解釈すると、無限とも解釈でき、ゼロ除算は 0と無限の不思議な関係を長く尾を引いている。)
同様に0割る0は ゼロであること0/0=0が簡単に分かる。
上記が千年以上も掛かったゼロ除算の解明であり、 ニュートンやアインシュタインを悩ましてきたゼロ除算の簡単な解決であると 世の人は、受けいれられるであろうか?
いずれにしても、ゼロ除算z/0=0は  既に数学的に確定している と考えられる。そこで、結果の 世への影響 に関心が移っている。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/


再生核研究所声明173(2014.8.6) 愛が無ければ観えない
2013.2.26.11:15:
愛が無ければ、見えない、 関心が無ければ、進まない、できると考えなかった。
何と 15年も前から、 考え、 3人の学位論文の素材になり、 2冊の著書でも扱い、 S先生やF先生も講究録で触れている。 それなのに馬鹿みたいなことに気付かなかった。
と述べている。要するにある結果に気づいたのであるが、先が有ると思わなかったので、関心をもって考えなかったので、長い間 基本的な結果に気づかず、通り過ぎていた、事を示している。
さらに、最近のゼロ除算100/0=0,0/0=0の結果の場合は 酷い歴史的な事件と言える。すなわち、ゼロ除算100/0=0は 割り算を掛け算の逆と考えると、不可能であることが証明されるので、不可能の烙印を押されていた。しかし、物理学などでは重要な問題が絡んでいるにも関わらず、何百年間も人は、新しい考え方に関心を抱かず、不明のままで年を重ねてきた。それが、偶然ちょっとしたきっかけで、解決をもたらした(再生核研究所声明171参照)。
興味、関心、愛が無ければ、何も気づかず、発見もせず、認知さえしないで、空しいものになる。
そもそも人間とは何者かと問えば、まずは、動物であるから、本能である、食、男女の愛、家庭、育児、そして 生活の基礎を作る仕事など、それらは、生きることの原理であるから、それらに関する関心は誰でもあると考えられる。生活や人生の骨格であり、それらの関心は基本的なもので、共通的、普遍的なものであると考えられる。既に、それらの件で、汲々として追われていて、他に多くの関心を擁ける余裕が持てない状況は、世に広く見られる。
しかしながら、もし、人間がそれらの原理的な関心だけに追われれば、人生において、何か もの足りないと思うだろう。上手く生きて退職して、上記の基本的な関心を、そう強く気に掛ける必要性から解放された人が、生きることで どのような関心を抱くは、極めて興味深い。スポーツを楽しむ、文化活動に励む、宗教に興味を深める、何かの研究に励む、ビジネスなどを始める、など、などである。 もし、ぼんやり暮らしていれば、人間の一生も、多くの動物の一生も 本質的にはそうは変わりないと ぼんやり抱くだろう。
特に知的な好奇心を失えば、本質的に人生は、殆ど食べること、生活するで 終わってしまうであろう。この好奇心こそ、人間の生命力であり、人間らしい生 と言えるだろう:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている― 再生核研究所声明148.
そこで、そこまでは行かなくても、 人間が何に関心を抱くは 極めて興味深い、人間研究の課題である。実に多種多様であり、世間を見てもその多様性には驚かされる。その多様性こそ人間社会の豊かさの表れであると評価される。生まれながらの性格、能力、幼児時の育ち、教育など、どうして興味の対象、関心を抱く対象が決まるかは 今後の大きな課題である。 一般には、関心や愛情はどんどん深まって、成長、発展する性格があり、人生の晩年までには名人や、達人の域にまで成長する例は世に多い。 多くの数学者が、子供の頃将棋や碁で遊んでいたなどの話しを交わしたことが有るが、興味深い例である。一流のスポーツマン、イチロウ選手などいろいろな有名選手の生い立ちと名前が思い出される。
愛を抱く、興味を持つ、関心を持つは、人間らしい人間を育てる基本であるから、知識偏重、詰み込み教育ではなくて、 みずみずしい愛、意欲が湧く、情念が生命力とともに湧いてくるような 全人的な教育が大事ではないだろうか。
心身を大事にすることともに、真理、真智を愛する精神こそ、大事ではないだろうか。
何のために、何故か? ― 人間らしい、人生を送るためにである。
以 上

できる Excel 2013 Windows8/7対応 (できるシリーズ)/小舘 由典
¥1,231
Amazon.co.jp
よくわかる Excel 2010 基礎 データCD-ROM付/富士通エフ・オー・エム
¥2,160
Amazon.co.jp
できるExcelピボットテーブル データ集計・分析に役立つ本 2013/2010対応 (できる.../門脇 加奈子
¥2,484
Amazon.co.jp

0 件のコメント:

コメントを投稿