Why Hell Can't Freeze Over: Quantum Physics And Absolute Zero
Last week, physicists at the National Institute for Standards and Technology reported they'd cooled an object to a million times colder than room temperature. It was a record for the super-difficult science of super-cooling.
In this field, researchers inch ever closer to — but never reach — the state of absolute zero temperature. It's a science that has some very cool (pun very much intended) applications including ultra-sensitive gravity wave detectors for "hearing" distant black hole mergers.
But moving beyond these applications, why is super-cooling so hard to begin with? Why can't we just get to absolute zero degrees and be done with it?
The answer to this question drops us straight into one of the quantum universe's most startling features: The world never rests.
To see what this means, let's remind ourselves about the meaning of "temperature." Without getting too technical (we should really be talking about entropy here), temperature for physicists is a measure of random motion. Imagine the gas molecules in the air around you are little cue balls of matter. The higher the air temperature, the faster those little orbs of matter will be ricocheting around the room, bouncing off the walls and each other. So cooling the air means finding some means to slow the molecules down. From this perspective, there there's no conceptual reason why you shouldn't be able bring them entirely to a halt. Do that, and the air would have a temperature of "absolute zero" degrees (as measured in units called Kelvins. In Fahrenheit, this would be -459.67 degrees).
But, it turns out, nature doesn't work that way. The universe doesn't "do" zero temperatures because it doesn't do zero motion.
Thinking about matter and motion in the way we described above is what we physicists call "a classical picture." In classical physics, matter is made of tiny particles of "stuff" and motion is just the change in the particles position with time. It all makes intuitive sense based on our experience of the world at the scale of baseballs and boulders. But a hundred years or so ago, physicists began probing the world on the scale of atoms. What they found was the classical, intuitive picture didn't work well for explaining their experiments.
In response, they developed a new kind of physics. In an astonishing burst of creativity, they kept key principles from the classical world — like the conservation of energy — but added new rules. One of these was the Uncertainty Principle, which essentially told us that reality is fuzzy at its root level. To be exact, certain pairs of properties — like motion and position — can never be known exactly. The Uncertainty Principle isn't saying there's something wrong with our instruments. Instead, it tells us there's something wrong with our classical intuitions. In particular, when it comes to motion, it tells us it's impossible to know the position and the motion of a particle exactly. The more you lock in the position of a particle, the wider the range of velocities the particle can have.
So what does this have to do with temperature?
Absolute zero should mean bringing particles to a halt. But that would imply you knew exactly where they were. You had them perfectly "localized." If that's the case, then the Uncertainty Principle demands there must be some uncertainty in their motion. They can't be perfectly known to be perfectly at rest. The deeper meaning of this this quantum logic is that the universe can never be at rest. There is a "floor" to how much things can be slowed down (or cooled). It's impossible to go below that floor (though scientists do get ever more clever in skirting its edges).
The implications of this can get pretty strange. Imagine we put a particle, like an electron, in a box. Now we ask: What's the lowest energy state of the electron + box system? In classical physics, it would just be the electron sitting there unmoving — i.e. zero motion, hence zero energy. But quantum physics won't allow such a thing as zero energy (because of the Uncertainty Principle). Instead, the system has non-zero "ground state" energy with the electron bouncing back and forth between the box walls. That's as low as you can go. The electron can't be stopped.
Take this idea further, and you get to the delicious idea of vacuum energy. There the Uncertainty Principle demands that there can be no pure and perfect vacuum with a state of zero energy. Thus, in quantum physics, the vacuum is not empty but is a seething froth of "virtual particles" that are never manifested and yet have a verifiable effect on the particles we do see.
No vacuum. No zero energy. No zero temperature. No common sense expectation about the world's behavior.
The discovery that the quantum world was the foundation for our common-sense classical experience was a triumph of science. It was a validation of science's ability to take us beyond our limited senses and limited concepts. There is no way to "picture" this quantum world with our classical imaginations. Instead, what we found was a new frontier.
At its root, quantum physics showed us that this world we inhabit is dynamic to its very core: buzzing, roaring, shuddering and trembling like an infinite Jackson Pollack painting. It is not just richer than we imagined, but stranger and more wonderful than we can imagine.
That view, hidden in the impossibility of absolute zero temperature, is a gift that science has given us all. Now what are we to make of it?
Adam Frank is a co-founder of the 13.7 blog, an astrophysics professor at the University of Rochester, a book author and a self-described "evangelist of science." You can keep up with more of what Adam is thinking on Facebook and Twitter:@adamfrank
大変興味深く読みました:
再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:
Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0⁄x= 0 である。しかしx⁄0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。
実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:
しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。
全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。
古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。
2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インドの数学者・天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:
Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
· 愛別離苦(あいべつりく) - 愛する者と別離すること
· 怨憎会苦(おんぞうえく) - 怨み憎んでいる者に会うこと
· 求不得苦(ぐふとくく) - 求める物が得られないこと
の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。
これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。
ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。
以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること
相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。
このような永い歴史に対して、ゼロ除算を可能にする自然で簡単な体系が山田体として確立され、四則演算は 簡単な修正で ゼロ除算を含めていつでも可能であることが明らかになった。しかしながら、ここには分数,割り算の意味を自然に拡張して、可能になったという、新しい概念があるので、扱いには大いに気を付ける必要がある。分母がゼロである場合、ある意味で考えられるという、考え方である。ここは、従来、分数で、分母がゼロになる場合、微分学の基礎概念である、極限で考えるに対して、新しい意味付けを与える方法が発見された。これは、無限級数f(x) = \sum_{n= -\infty}^{\infty} C_n (x –a)^n に対して f(a)=C_0 と簡単に述べられる。具体例で述べれば、関数e^{xt}/(x^2)の原点における値はt^2/2として,関数cos(xt)/(x^3)の原点での値は恒等的にゼロとして意味を有する。このような値の実際的な意味が、幾何学、解析学、解析幾何学,微分方程式など広範に現れて、従来分母がゼロになる場合に避けてきたところ、いろいろな意味と解釈が可能であることが分かってきた。
新しい、状況とは何かであるが、第一には、我々の空間に対する考えに新しい世界が現れたことである。基本的な関数y=1/z の原点での値がゼロと定義されることから、従来無限遠点.無限と考えられていた想像上の点が 実はゼロで表されることになる。そこで、無限が関与する数学が改められることである。極限値として、+、マイナス、無限、あるいは複素平面で、無限は考えられるが、それらは定まった数ではなく、定まった数としての無限の存在を否定する数学になっている。
それで、古典的な結果、原点の原点に中心をもつ円に関する鏡像は 無限遠点ではなく、ゼロであること、無限遠点はゼロで表されることなど、 基本的な変更が 要求される。ゼロ除算は可能であり、我々の空間の認識は間違っているということになる。
解析関数は孤立特異点で、極と言って、無限遠点の値を取るという考えは改められ、特異点の近くで、幾らでも無限遠点の近くの値を取るものの、特異点では、有限確定値を取ると改められる。
このような有限確定値の具体的な意味付けがいろいろ現れた。顕著な例は、(x,y) 直交座標系で y軸の勾配はゼロで、微分学で微分係数が +、マイナス、無限として極限値が存在するとき、その時、微分係数はゼロであると定義すると、解析学も幾何学も上手く調和して、微分学の多くの公式が付加条件なしに一般的に成り立ち、解析幾何学と調和がとれていることが明らかにされた。数学の相当な部分の修正が必要であり、数学をより美しく、統一的にスッキリと纏められる。
典型的な例として、半径Rの円を考えてRを無限に飛ばすことを考えると、円の面積は当然、限りなく大きくなるが、Rが更には大きくできないとき、円の面積は突然ゼロになることが、解析幾何学とゼロ除算で導かれた。これはRが更には大きくできないときが、円板が半空間、円が直線になる場合で、半平面の面積がゼロであることを示している。このことはある大きな世界を覗かせていて、破壊現象の記述や無限の考え方に大きな変革をもたらす。平行線の概念と空間の概念は、新しい世界観であるから、次でより詳しく触れている:
再生核研究所声明306(2016.06.21)平行線公理、非ユークリッド幾何学、そしてゼロ除算
以 上
再生核研究所声明296(2016.05.06) ゼロ除算の混乱
ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:
再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める
我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。
以 上
考えてはいけないことが、考えられるようになった。
説明できないことが説明できることになった。
Matrices and Division by Zero z/0 = 0
0 件のコメント:
コメントを投稿