2017年1月23日月曜日

日テレが毎年怯えるダウンタウンの笑えない出演料

日テレが毎年怯えるダウンタウンの笑えない出演料

今や、NHK幹部にとって目の上のタンコブとも言うべき存在が、大晦日恒例、日本テレビが放送する『ダウンタウンのガキの使いやあらへんで!!大晦日年越しSP!絶対に笑ってはいけない科学博士24時』だ。
 「平均視聴率(関東地区)が第1部(18時30分~)17.7%、第2部(21時~)は16.1%を記録した。たられば話だが、もし『ガキ使』がなかったら、紅白は視聴率50%を超えていた可能性が高いからです。しかも、あの番組は出演者を微妙に変えれば、半永久的に続くソフト。すなわち、NHKを半永久的に苦しめるコンテンツと言ってもいいんです」(NHK幹部)

 NHKに毎年、一泡吹かせている日テレ。さぞや小躍りして喜んでいるのかと思いきや、その逆だという。
 「いや、実情は少々、違うんです。正直言って毎回、同じ儀式の繰り返しに精神的に参っているんですよ」(テレビ関係者)

 なんと高視聴率が判明するやいなや、決まってダウンタウンの2人から提案されるのが『ガキ使』打ち切り話だという。
 「スタッフと顔を合わせると毎回、決まってお尻が痛い、イスに座れない、と言い出すんです。そして、最終的に『もう番組に出たくない…』と。もちろん、それはフェイク。本音は出演料の吊り上げです。番組打ち切りをチラつかせることで、ギャラを少しでもアップさせようという作戦なんですよ」(放送作家)

 当然、2人の特番のギャラは毎年、右肩上がりを続けることになるという。
 「気が付けば、なんだかんだでダウンタウン1人当たり計1000万円のギャラを支払っている計算になる。これはもう異常ですよ」(前出・テレビ関係者)

 ちなみに、他の出演者たちのギャラだが…。
 「月亭方正180万円~、ココリコの遠藤章造140万円~、田中直樹が130万円~。日テレはダウンタウンの2人のギャラを下げようと毎年、チャレンジするが、逆にアップしてしまうんです」(番組事情通)

 視聴率、ギャラともに、どこまで上がるのか!?http://wjn.jp/article/detail/3200250/

再生核研究所声明 125 (2013.8.24): お金の問題 ― 貨幣について ― 本質論
                                            
(2013.8.17 再生核研究所声明に関心を抱く人の 結構永い間の要望であるが、難しい多面性を有するので、中々纏められなかった。今朝 夏休みを利用して 夏休みの宿題と考えて纏めてみる気持ちになった。1回では無理なので、本質論、収入面、支出面などに分けて 順次触れたい)

まず、お金の述語 を確認しておこう:
貨幣とは、経済学上は(欧米のMoneyやMonnaieなどの用語に対応する訳語として用いられ)、「価値尺度」「交換の媒介」「価値の保蔵」の機能を持ったモノのことである。
広義には、本位貨幣の他にも、法律により強制通用力を認められている信用貨幣も含めて指している[1]。つまり 「貨幣」という語で、鋳貨紙幣に加えて(当座預金などの)信用貨幣も含めて指す場合が多い[2]
貨幣(として用いられるモノ)が額面通りの価値を持つためには、その貨幣を発行する政府に対して信用が存在することが必要条件である。政府は、租税の算定に通貨を用いる。
なお、慣習的な用法として、法令用語の意味における貨幣と紙幣・銀行券をあわせて「お金」と呼ぶことが多い。(ウィキペディア

お金の重要性、価値については、簡潔に 地獄の沙汰も金次第 という諺に表されるであろう。実際、人間の多くの価値が お金で数値化されて、人間の持つ多くの価値がお金を通して交換されるということに その本質が見出される。人間の価値には 生命の延長や場合によっては命の値段さえ関係してくる。実際、高度な医療で 生命が救われたりする状況は 身近に体験される。ある時間の労働から、芸術作品、アイディア、食品、ほとんどのもの、地位や名誉さえお金で評価されて、交換が可能になる。― 資本主義の発達したアメリカでは アメリカンドリームとは 大金持ちになることで表現され、最近でも、アメリカの大使は、大統領選挙における 献金の額で決まるなどと揶揄されている。そこで、人生の多くの部分が その大事なお金を得るための努力であるとさえ、錯覚してしまうほどである。
ところで、そのお金の価値であるが、人間の欲求の数値化であるから、生鮮食品の価値の変動や、株価、外国為替の変動のように絶えず、変化するものであるが、他方国家が、国家予算を通して国家を運営している現実が有るので、世の価値としては最も信じられるものであることには変わりはない。普遍 (不変) 的な価値を持つとされる、金 でさえ非常時やハイパーインフレーションの際、本物か否かの判定や流通性に問題を起こして、有効ではなかったとされている。
さまざまな価値の数値化であるから、実際には極めて難しく、ものの値段や年俸、報酬など歴史と文化を反映させ、慣例さえ尊重しなければ、数値化はたちまち、大混乱を起こしてしまうだろう。再生核研究所声明 722011/12/06) 慣性の法則 ― 脈動、乱流は 人世、社会の普遍的な法則 も参照。
そこで、人間の多くの欲求が お金で叶えられるものであれば、お金が大事は無理からぬという現実がある。実際、お金が十分あれば、相当な自由を得て、好きなことが出来るのであるから、一応の理想的な状況に相当近づくことが出来ると考えられる。
美しい曲を奏でる、それが幾らに値するかは 聞く人の個人によって評価はいろいろであるが、プロとなると 自分で評価して、客を呼ぶのであるから、厳しさが有るが、しかし、それは音楽に限らず多くの価値がそうである。画家は、この絵を幾らで売りたいと宣言するだろう。漁師がこの魚を幾らで売りたい、と同様である。ギャンブルや宝くじのように 夢さえお金に変えて売買できる。人間の価値さえ、その稼ぎの大きさによって評価される面は 確かに世に多いと言える。作家、画家、スポーツマン、芸能人、等々、また地位さえ、収入で評価される面は多い。近年、大学の人事評価などでも 研究費をどれほど得ているかは、大きな評価の要素に成っていて、科学研究費など生涯の研究補助金額がインターネット上に公開されている。
これらは要するに、かつての農村社会で広く実現していた いわゆる自給自足を基本とする社会から、今では農村社会でさえ、電気、ガス、機械の購入、医療、社会活動などで、生活していくためには お金が必要であると纏められる。お金本位制にみえるような社会は、資本主義の発達したアメリカで 上述のように極めて顕著に見られる。いわゆる いろいろなサービスに対するチップなども重要で、適切にお金を払わなければ、大きな問題になるだろう。さまざまな価値が お金で評価される社会である。お金が大きな役割を果たす資本主義の問題点については、 再生核研究所声明75 2012.2.10):  政治・経済の在りようについて も参照。
宗教界でもお金は必要であるから、神のごりやく(ご利益)を除いても 関係者の生活費や、神社、仏閣の維持の観点からも お賽銭や寄付を必要とするのは当然である。少し、間違えると、中世、西欧で行われた免罪符の発行救われるための献金を要求しかねない状況に追い込まれてしまう。いわゆる戒名なども売買される、布施の額の大きさで左右される可能性を有する。無理からぬ面も有ると、理解できるだろう。選挙におけるいわゆる買収などは、何時も起きている現象ではないだろうか。
されば、お金とは何か お金の背後にあるものは、それは様々な人間の考える価値の数値化で、その価格によって、交換される数値化であり、国家と複数の人からなる社会の一定の承認を得た数値化であると言える。
ある人が、この本を1000円で売りたいと宣言して、買う者が現れれば、立派な数値化であり、その本は1000円のものとして、有効性を持ち、その時は 本の価値と1000円が 等価であるとして、評価されるだろう。本を売った者がそのお金で食品を購入すれば、1000円を通して、本と購入した食品の数値化は 等価となるだろう。このような連鎖を続けて行くのが お金の本質であると言えるだろう。
お金とは、そのような数値化における、交換を物理的に行うもの、可能にするものであると言える。

以 上


再生核研究所声明3432017.1.10)オイラーとアインシュタイン

世界史に大きな影響を与えた人物と業績について

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上

再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.

再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する

(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$


再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                     
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

0 件のコメント:

コメントを投稿