ビッグ・データ時代に対数表を味わう
かけ算がたし算でできる
対数表の数値がどのような方法で計算されているかを見ていく前に、そもそも対数表は何のために考え出されたのかを見ていきましょう。電子計算機が誕生する以前、高度な計算を担っていたのが対数表です。我が国では丸善の対数表が有名です。
現在もなお高校数学の教科書の後ろに対数表は掲載されていますが、使う機会はほとんどなくなってしまいました。
連載「対数の発見がもたらした大航海時代と技術革新」でも紹介したように、対数は天文学的計算を克服するために、城主ジョン・ネイピアによって考案された画期的計算方法です。今から400年前の物語です。
スマートフォンを使いこなす現代人にとって、対数表が電卓代わりになる様子は新鮮に映るはずです。まずは対数表の使い方を簡単な例で理解するところから始めてみます。
2と2のn乗を表にまとめておきます。下の表では、上の段に2のn乗の値(1、2、4、・・・)、下の段にnの値(0、1、2、・・・)をまとめたものです。この表を用いることでかけ算の答えをあっという間に求めることができます。
例えば、128×256を考えてみます。
まず、128と256を上の段に見つけます。次にその下にあるnの値を確認します。128は7、256は8です。その7と8をたし算します。7+8=15。すると、下の段に15を見つけ、その上の数が求める値になります。したがって、32768が求める積と分かります。
このような数表が対数表です。下の段のnが対数です。128の対数が7であるとは、128=2×2×2×2×2×2×2のように128は2を7回かけた数であることを表しています。
(*配信先のサイトでこの記事をお読みの方はこちらで本記事の図表をご覧いただけます。http://jbpress.ismedia.jp/articles/-/49009)
128×256=(2×2×2×2×2×2×2)×(2×2×2×2×2×2×2×2)
⇒2を7回+8回=15回かけた数
⇒対数表から32768
⇒2を7回+8回=15回かけた数
⇒対数表から32768
このように、かけ算を計算するのに対数表を用いると、たし算だけで答えが得られるということです。この2のことを底と呼びます。
400年前、城主ジョン・ネイピアはこの対数のアイデアを考案し、対数表を作り上げました。彼が採用した底は0.9999999という奇妙な数でした。詳細は連載「ジョン・ネイピア物語〜対数は天文学者の寿命を2倍にした」を読んでください。
さらに、ネイピアは三角比sinθに対する対数を考えました。天文学に必要な計算にフォーカスしたからです。
はたして、20年の時間をかけて完成させた対数表は一般には理解し難いものになってしまいました。
そこに現れた天文学者ブリッグスがネイピアの後を継ぎ、底を10とする対数表を完成させることになります。それが、高校数学の教科書に掲載されている常用対数表の原型です。
常用対数表を使ってみる
対数表では対数に対する数を真数と呼びます。2を底にしたの対数表(回数表)では上段2^nが真数、下段nが対数です。次が常用対数表です(下の表)。この対数表は真数が1.00から9.99、底を10とする対数が小数点以下4桁まで与えられています。
左列が真数の2桁で、上段の0から9が真数の小数第2位の数を表しています。例えば、2.00の対数なら左列2.0の行と上段0の列が交わる0.3010と分かります。10^0.3010=2.00ということです。
この常用対数表を用いて、かけ算1.43×5.93を求めてみます。
まず、1.43と5.93の対数を対数表から探し出します。それぞれ0.1553、0.7731なので、それらの和を計算します。
0.1553+0.7731=0.9284
この0.9284という数は対数ですから、この数に対する真数を対数表の中から探し出します。最初と逆の探し方です。対数の中から0.9284を探し出して、左列8.4と上段の数8から8.48と求まります。
したがって、
1.43×5.93=8.48
と求まったことになります。実際には
1.43×5.93=8.4799
ですから、対数表による結果は小数第1位まで正しい近似値であることが分かります。
ブリッグスから電卓が普及するまで、300年以上の間、対数表が世界中の人々の計算を助けてきたことに驚かされます。
対数表の計算
ところで、対数表の数値はどのように計算されるのでしょうか。これが大変な作業になります。ジョン・ネイピアは44歳から64歳の20年間を対数表の計算に費やしました。
ネイピアの後を継いだブリッグスが100000までの14桁常用対数表を完成させのは63歳の時でした。ここにブリッグスが行った計算の1コマを再現してみましょう。
2の常用対数0.3010(log 2=0.3010)の算出過程
まず5の常用対数を求めます。ここに用いるのが前回「知っておきたい平方根の計算方法」で取り上げた平方根の計算です。A=1とB=10の2数から始めて、平方根と平均の計算を繰り返し行うことで5の常用対数にたどり着きます。
ポイントになる計算が次です。
log √AB=(log A+log B)÷2
左辺に平方根の計算、右辺は平均の計算であることが分かります。A=1とB=10に対してC=√AB=3.162277、次にD=√BC=5.623413というように2数の平方根は5に近づいていきます。
対数の算出ですが、log A=0、log B=1から始めて
log C=log √AB=(log A+log B)÷2=0.5
というように、2数の平方根の常用対数は2つの対数の平均で求められます。
このように平方根と平均の計算を続けていくことで5の常用対数が
log 5=0.6989700
と得られます。
これより、2の常用対数は次のように求まります。
log 2=log 10/5=log 10-log 5=1-0.6989700=0.3010300
マクローリン級数による対数の計算
さて連載「電卓はいかに計算しているのか」において、「マクローリン級数との出会い」と題して、関数電卓でsin31°が計算できることに驚いた私がマクローリン級数に出会い、四則でsin31°の値が計算できることに感動したことを紹介しました。
この公式の中にlogのマクローリン級数もあります。三角関数の数値計算ができるのだから対数のそれもできるだろうと考えることは自然です。
オイラーの工夫
ところが三角関数のように簡単にはいかないのです。
三角関数のマクローリン級数の式が全実数xで成り立つのでsin31°の計算に使えました。それに対して、log (1+x)のマクローリン級数の式では、xが-1<x<1の範囲でしか成り立たないのです。
先のブリッグスが求めた5の常用対数log 5の計算には用いることができません。この窮状を救ったのがオイラーです。
対数log(1+x)は底がネイピア数eの自然対数です。連載「ジョン・ネイピア物語は終わらない〜ネイピア数e誕生物語」で詳細を紹介したように、ネイピア数eと呼ばれる数はオイラーの手によって、ネイピアの対数の中から発見されました。
対数を深く研究したオイラーは、log(1+x)のマクローリン級数から出発して新しい対数の値を計算するのに適した公式を導出しました。
オイラーは、小さなxの値に対してこの式が「強く収束する」と述べ、これを用いることで対数の計算が驚くほど簡単になることに気づきました。
x=1/3をこの公式に代入すると、
2の自然対数が得られます。同様に、x=1/9を代入すると、
これより、5の自然対数が次のように求められます。
さらに、2と5の自然対数の値から10の自然対数を次のように求めます。
最後に必要になるのが底をeから10に変換する計算です。オイラーは、ある数の底がaの対数が分かれば、「簡単に」底がbの対数を求めることができることを発見しました。このアイデアは簡単でとても役に立つのでオイラーは「対数の黄金法則」と呼んでいます。「黄金法則」を用いて、
にたどり着きます。これは、小数第6位までブリッグスの求めた値に等しいです。ブリッグスの方法では平方根の計算が24回も必要であるのに対して、このオイラーの方法では一度も用いていません。オイラーの方法の方がはるかに速く対数の値を求めることができます。
私たちがこのような数値計算を日常で行うことはありません。連載ではここしばらく数値計算をテーマに取り上げていますが、それは計算のスピードの追究がいかになされてきたのかを紹介するためです。
今もこの瞬間に世界中のパソコンやスマートフォンの内部では計り知れないほどの膨大な計算が処理されています。ディープ・ランニングやAIなど、ビッグ・データと呼ばれる計算の世界が進化中です。もはや、どれだけの計算量なのかを人間が感知できない世界になってしまいました。
このようなスピードの時代だからこそ、対数表や対数の仕組みでできた計算尺を手にして計算してみることは、私たちに計算の進化やリアリティを思い出させてくれる体験になるでしょう。
筆者:桜井 進
大変興味深く読みました:
再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
以 上
再生核研究所声明343(2017.1.10)オイラーとアインシュタイン
世界史に大きな影響を与えた人物と業績について
再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。
オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質はエネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:
Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).
今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上
再生核研究所声明347(2017.1.17) 真実を語って処刑された者
まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシアの数学者、哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者、ドミニコ会の修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクスの地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。
さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。
知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、
1) 新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2) 従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3) もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4) もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5) 巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。
数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。
以 上
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58.
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf DOI:10.12732/ijam.v27i2.9.
再生核研究所声明335(2016.11.28) ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。
資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156 Qian,T./Rodino,L.(eds.):
Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177)
Sep. 2016 305 pp.
(Springer) 9783319419435 25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上
0 件のコメント:
コメントを投稿