The Universal History of Numbers: a Book Inspired by a Kid’s Question
The road of science is paved with questions, and the most interesting ones mostly come from children. A Universal History of Numbers by Georges Ifrah became a pioneering book resulting from the curiosity of children. Ifrah wanted his students to feel at ease and never embarrassed by asking questions. Hence, he compiled a list of some of his most frequently asked questions and spent a decade answering them.
The Universal History of Numbers: an international bestseller
Ifrah faced questions that would make any teacher hesitant, like “Who invented zero?” or “How did the Romans do math?” His kids certainly weren’t aware that they’d help compile a critically acclaimed work of nonfiction. Since the book’s publication, it’s been on several lists, including “100 or so Books that shaped a Century of Science” of American Scientist‘s list, referring to the 20th century.
[Image Source: Amazon]
“Where do numbers come from?”
Following the years, Ifrah visited numerous museums, corresponded with anthropologists, historians, linguists, archeologists and read hundreds of articles on every aspect of numerals. Having no financial backing, he worked as a delivery boy, a waiter, and even a watchman to ‘keep mind and body together’ in his words.
Anthropology of numbers
The result of this self-imposed mission is a monumental work of over 650 pages, graced with hundreds of illustrations of documents, named as A Universal History of Numbers. In his book, Ifrah said the oldest human invention is a system of accounting that used animal bones and notches. Those have been found by archeologists in Western Europe and also determined to between 20.000 and 30.000 years old. He also points that the positional system got re-invented at least four times by Babylonians, Chinese, Mayans, and Hindus.
[Image Source: Amazon]
“Sir, who invented the zero?”
According to Georges Ifrah, only the Indian zero had roughly the same potential as the one we use nowadays. In his book, he points that the Mayans and Babylonians had an idea of zero within their grasp, but they used it only to separate between the numbers 16 and 106. In other words, the Hindus recognized that zero is a number like any other, not just a symbol for the empty slot. This was the crucial step in creating the various computational algorithms that we learn in school today.
Granted, some of the parts of the book aren’t easy to read at all. Often Ifrah goes into the tiny details in analyzing some ancient documents dealing with numbers. This quantity of details might stretch the reader’s patience. However, both From One to Zero: A Universal History of Numbers and also The Universal History of Numbers: From Prehistory to the Invention of the Computer are worth the read. They can help anyone understand the evolution of science, engineering and human civilization on earth.
To jump into the world of this amazing world, and see the other books of Georges Ifrah. You can also buy all via Amazon as well.http://interestingengineering.com/universal-history-numbers-book-inspired-kids-question/
とても興味深く読みました:
再生核研究所声明 148(2014.2.12)
100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では
無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
割り算を掛け算の逆だと定義した人は、誰でしょう???
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
明治5年(1872)
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
1人当たり何個になるかと説いていますが、1人もいないのですから、その問題は意味をなさない。
よってこれは、はじめから問題になりません。
ついでですが、これには数学的に確定した解があって それは0であるという事が、最近発見されました。
Reality of the Division by Zero z/0 = 0
Einstein's Only Mistake: Division by Zero
0を引いても引いたことにならないから:
君に0円の月給を永遠に払いますから心配しないでください:
再生核研究所声明171(2014.7.30)
掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
(2014.7.11小柴誠一、山根正巳氏との会合で、道脇裕氏の 割り算と掛け算は別であり、ゼロ除算100/0=0は自明であるとの考えを分析して得た考えを纏めたものである。)
ゼロ除算100/0=0は2014.2.2 偶然に論文出筆中に 原稿の中で発見したものである。チコノフ正則化法の応用として、自然に分数、割り算を拡張して得られたものであるが、歴史上不可能であるとされていること、結果がゼロであると言う意味で、驚嘆すべきことであること、さらに、高校生から小学生にも分る内容であると言う意味で、極めて面白い歴史的な事件と言える。そればかりか、物理学など世界の理解に大きな影響を与えることも注目される。詳しい経過などは 一連の声明を参照:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
しかるに いろいろな人たちと広く議論しているところであるが、世界の指導的な数学者でさえ、高校生でも理解できる発表済みの論文 その後の結果について、現代数学の常識を変えるものであり、受け入れられない、と言ってきている。まことに不思議なことであり、如何に驚くべき結果であるかを示していると言える。
多くの数学者は、内容を理解せず、100/0=0 は100=0 x 0 =0 で矛盾であると即断している。しかるに論文は 100/0 は 割り算の意味を自然に拡張するとゼロの結果を得るのであって、ゼロ除算の結果は 100=0 x 0 =0を意味しないと説明している。 逆に、無限大、無限遠点は数と言えるかと問うている。
ところが面白いことに 既に3月18日付文書で、道脇裕氏は 掛け算と割り算は別であり、ゼロ除算100/0は 自明であると述べていた。しかし、その文書は、一見すると
矛盾や間違いに満ちていたので、詳しく分析してこなかった。しかるに上記7月11日の会合で、詳しい状況を聞いて、道脇氏の文書を解読して、始めて道脇氏の偉大な考えに気づいた。結論は、ゼロ除算100/0は分数、割り算の固有の意味から、自明であると言うことである。これはチコノフ正則化法や一般逆とは関係なく、分数、割り算の意味から、自明であるというのであるから、驚嘆すべき結果である。千年を越えて、未明であった真実を明らかにした意味で、極めて面白い知見である。またそれは、割り算が掛け算の逆であり、ゼロ除算は不可能であるという長い囚われた考えから、解放した考えであると評価できる。
原理は日本語の表現にあるという、掛け算は 足し算で定義され、割り算は 引き算で定義されるという。割り算を考えるのに 掛け算の考えは不要であるという。
実際、2 x3 は 2+2+2=6と繰り返して加法を用いて計算され、定義もできる。
割り算は、問題になっているので、少し詳しく触れよう。
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるかと考え、いまは 50 回引いてゼロになるから分数は50であると考える。100を2つに分ければ50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。a がゼロでなければ、分数b/aは 現代数学の定義と同じに定義される。
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、
100割るゼロはゼロ、すなわち、100/0=0である。(ここに、絶妙に面白い状況がある、0をどんどん引いても変わらないから、無限回引けると解釈すると、無限とも解釈でき、ゼロ除算は 0と無限の不思議な関係を長く尾を引いている。)
同様に0割る0は ゼロであること0/0=0が簡単に分かる。
上記が千年以上も掛かったゼロ除算の解明であり、 ニュートンやアインシュタインを悩ましてきたゼロ除算の簡単な解決であると 世の人は、受けいれられるであろうか?
いずれにしても、ゼロ除算z/0=0は 既に数学的に確定している と考えられる。そこで、結果の 世への影響 に関心が移っている。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
以 上
再生核研究所声明335(2016.11.28) ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。
資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156 Qian,T./Rodino,L.(eds.):
Mathematical Analysis, Probability and
Applications -Plenary Lectures: Isaac 2015, Macau, China.
(Springer Proceedings in Mathematics and Statistics, Vol. 177)
Sep. 2016 305 pp.
(Springer) 9783319419435 25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上
0 件のコメント:
コメントを投稿