Einstein: un mistero chiamato bellezza
Se la relatività si dimostrerà corretta, i tedeschi mi considereranno tedesco, gli svizzeri diranno che sono cittadino elvetico e i francesi mi definiranno un grande scienziato. Se si dimostrerà errata, i francesi diranno che sono svizzero, gli svizzeri che sono tedesco e i tedeschi che sono ebreo.
Albert Einstein, in effetti, ha cercato di essere un apolide e soprattutto uno scienziato, animato in particolare dalla curiosità su come funziona l’universo. Riuscire a classificarlo in una semplice definizione, come quella di comodo, “genio”, non è impresa semplice e lo si comprende bene sin dalla seconda pagina di Einstein, la biografia a fumetti di Corinne Maier e Anne Simon pubblicata in Italia da Panini Comics nella linea 9L.
Le due autrici, dopo aver realizzato le biografie di Freud e Marx, proseguono con un nuovo grande protagonista del XX secolo.
Le due autrici, dopo aver realizzato le biografie di Freud e Marx, proseguono con un nuovo grande protagonista del XX secolo.
CONFRONTARSI CON LA STORIA
Einstein nacque in un periodo storico particolarmente violento e razzista. Alcuni degli eventi storici precedenti alla sua nascita furono la guerra franco-prussiana (1870), la comune di Parigi (1871), un crac finanziario con conseguenti 17 anni di crisi (1873), mentre nel frattempo Bismarck varava leggi atte a soffocare le rivendicazioni dei lavoratori (1)(1878) e Wilhelm Marr fondava la Lega degli Antisemiti (1879).
Con la costruzione di questa premessa storica si apre l’Introducing: Einstein di Joseph Schwartz, professore di fisica presso l’Università di New York, e Michael McGuinness, pittore, illustratore, disegnatore. Inevitabile per chi scrive queste righe, e più in generale per il lettore di fumetti interessato al genere di approfondimento scientifico, il confronto tra quest’ultimo e il volume di Maier e Simon, e, allargando l’orizzonte, tra l’approccio degli Introducing e il nuovo fumetto scientifico.
Con la costruzione di questa premessa storica si apre l’Introducing: Einstein di Joseph Schwartz, professore di fisica presso l’Università di New York, e Michael McGuinness, pittore, illustratore, disegnatore. Inevitabile per chi scrive queste righe, e più in generale per il lettore di fumetti interessato al genere di approfondimento scientifico, il confronto tra quest’ultimo e il volume di Maier e Simon, e, allargando l’orizzonte, tra l’approccio degli Introducing e il nuovo fumetto scientifico.
Se la storica serie propone uno stile più vicino al libro illustrato e centrato soprattutto sulla scienza e le sue scoperte, il nuovo fumetto scientifico che sta avendo sempre più successo, anche sull’onda delle opere scritte da Jim Ottaviani, si concentra soprattutto sulle storie degli scienziati. Non fa eccezione nemmeno quest’ultimo volume dedicato ad Albert Einstein che, a differenza di quanto fatto da Schwartz e McGuinness, distribuisce il contesto storico all’interno dell’albo in maniera più diluita utilizzando poche vignette piuttosto che la decina di pagine presenti nell’Introducing.
Anche l’approccio grafico è differente: mentre McGuinness realizza soprattutto delle illustrazioni senza la classica suddivisione in vignette, questo anche perché una buona parte dell’Introducing è dedicato alla spiegazione dei concetti legati a lavori di ricerca di Einstein, Anne Simon realizza un fumetto vero e proprio su una griglia di base di 4 strisce da 3 vignette ciascuna. Questa impostazione permette di riempire di eventi e informazioni le pagine, utilizzando poi una narrazione veloce anche grazie al racconto in prima persona di Einstein.
LA CHIAVE È LA GEOMETRIA
Uno dei punti chiave, sia biografici sia visivi del volume, è però la geometria. Questa entra nella formazione del piccolo Albert grazie a Max Talmey, studente di medicina, che frequentava casa Einstein e passava al bambino una serie di testi scientifici, divulgativi e non, come ad esempio il libro di Theodor Spieker sulla geometria piana (2) .
Questa divenne ben presto per il ragazzino uno dei rifugi dalla realtà quotidiana, fatta sia di bei momenti, come le passeggiate nei boschi dove curiosare in mezzo alla natura, o le lezioni di violino, o il regalo più bello, una bussola donatagli dal padre, ma anche di lezioni noiose, difficoltà economiche, antisemitismo.
Questa divenne ben presto per il ragazzino uno dei rifugi dalla realtà quotidiana, fatta sia di bei momenti, come le passeggiate nei boschi dove curiosare in mezzo alla natura, o le lezioni di violino, o il regalo più bello, una bussola donatagli dal padre, ma anche di lezioni noiose, difficoltà economiche, antisemitismo.
Per illustrare tutto questo, Anne Simon si sbizzarrisce alternando pagine ricche di vignette a illustrazioni più ampie, anche a tutta pagina, molte delle quali composte in maniera surreale dove la geometria, in questo caso non euclidea (come quella della relatività generale), gioca un ruolo essenziale nella rappresentazione delle idee scientifiche di Einstein. La tecnica di composizione di molte di queste illustrazioni si basa su uno sfondo statico su cui i personaggi si muovono in libertà cambiando la loro posizione nell’ambiente senza alcuna separazione con una griglia. Tale composizione, utilizzata ad esempio nei fumetti storico-scientifici disneyani degli anni ’70 e ’80 del XX secolo da Hector Adolfo de Urtiága, è evidentemente mutuata dalle illustrazioni dell’incisore olandese Cornelius Escher.
Il tratto umoristico, invece, mutuato da autori come Claire Bretecher (come la stessa autrice ha raccontato a Paul Buhle del Comics Journal) e Georges Wolinski, che raggiunge la medesima sintesi grafica ottenuta in Italia da Tuono Pettinato, mantiene la leggerezza della narrazione della Maier restituendo al lettore un prodotto gradevole, coerente con la figura del personaggio raccontato e abbastanza preciso. Ad esempio alcune delle immagini scelte o alcune delle espressioni messe in bocca ad Einstein, per quanto riescano efficaci nell’avvicinare il lettore moderno, suggeriscono una passione per la fantascienza che il fisico non ha mai avuto.
Nonostante questi dettagli, la caratterizzazione di Einstein risulta ottima: Corinne Maier sceglie di non nascondere nulla del fisico teorico, restituendo un essere umano a tutto tondo con le sue difficoltà come marito e genitore, o il suo senso di responsabilità nei confronti di una bomba nucleare cui non ha mai lavorato direttamente, senza dimenticare il suo essere fuori dagli schemi e quella leggerezza che ha caratterizzato tutta la sua vita anche di fronte ai violenti attacchi antisemiti di cui fu testimone e vittima fin da bambino.
A parte qualche concessione alla modernità (a volte anche nel gergo utilizzato dai personaggi) siamo di fronte a un libro bello e ben curato che si inserisce a buon diritto nell’ormai ben consolidato genere del fumetto scientifico.
Abbiamo parlato di:
Einstein
Corinne Maier, Anne Simon
Traduzione di Vania Vitali
Panini Comics, luglio 2016
64 pagine, cartonato, colori – 18,00 €
ISBN: 9788891220363
Einstein
Corinne Maier, Anne Simon
Traduzione di Vania Vitali
Panini Comics, luglio 2016
64 pagine, cartonato, colori – 18,00 €
ISBN: 9788891220363
非常に興味があります:
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 326: The division by zero z/0=0 - its impact to human beings through education and research\\
(2016.10.17)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
}
\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges to education and research on our wrong world history.
\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers.
The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):
\bigskip
{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}
Note that the complete proof of this proposition is simply given by 2 or 3 lines.
We should define $F(b,0)= b/0 =0$, in general.
\medskip
We thus should consider, for any complex number $b$, as (1.2);
that is, for the mapping
\begin{equation}
W = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere. Therefore, the division by zero will give great impact to complex analysis and to our ideas for the space and universe.
However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:
\medskip
1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,
\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki - repeated subtraction method,
\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,
\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$,
\medskip
and
\medskip
5) by considering the values of functions with the mean values of functions.
\medskip
Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:
\medskip
\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,
\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip
C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero, not the point at infinity.
\medskip
and
\medskip
D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.
\medskip
In (\cite{mos}), many division by zero results in Euclidean spaces are given and the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.
\medskip
See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.
Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.
Furthermore, T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.
Meanwhile, we should refer to up-to-date information:
{\it Riemann Hypothesis Addendum - Breakthrough
Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}
\medskip
Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1. Note its very general assumptions and many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impact on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and physical problems.
The mysterious history of the division by zero over one thousand years is a great shame of mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.
We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful, and will give great impact to our basic ideas on the universe.
For our ideas on the division by zero, see the survey style announcements.
\section{Basic Materials of Mathematics}
(1): First, we should declare that the divison by zero is possible in the natural and uniquley determined sense and its importance.
(2): In the elementary school, we should introduce the concept of division by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithmu and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.
(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.
(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of steleographic projection and the concept of the point at infinity -
one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, the point at infinity is represented by zero. We can teach the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.
Interesting topics are: parallel lines, what is a line? - a line contains the origin as an isolated
point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). - Here note that an orthogonal coordinates should be fixed first for our all arguments.
(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity - the very classical result is wrong. We can also prove this elementary result by many elementary ways.
(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,
the gradient of the $y$ axis is zero; this is given and proved by the fundamental result
$\tan (\pi/2) =0$. The result is trivial in the definition of the Yamada field. This result is derived also from the {\bf division by zero calculus}:
\medskip
For any formal Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero
\begin{equation}
f(a) = C_0.
\end{equation}
\medskip
This fundamental result leads to the important new definition:
From the viewpoint of the division by zero, when there exists the limit, at $ x$
\begin{equation}
f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} =\infty
\end{equation}
or
\begin{equation}
f^\prime(x) = -\infty,
\end{equation}
both cases, we can write them as follows:
\begin{equation}
f^\prime(x) = 0.
\end{equation}
\medskip
For the elementary ordinary differential equation
\begin{equation}
y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,
\end{equation}
how will be the case at the point $x = 0$? From its general solution, with a general constant $C$
\begin{equation}
y = \log x + C,
\end{equation}
we see that, by the division by zero,
\begin{equation}
y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,
\end{equation}
that will mean that the division by zero (1.2) is very natural.
In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.
However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.6) and (2.7). At $x = 0$, we see that we can not consider the limit in the sense (2.3). However, for $x >0$ we have (2.6) and
\begin{equation}
\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.
\end{equation}
In the usual sense, the limit is $+\infty$, but in the present case, in the sense of the division by zero, we have:
\begin{equation}
\left[ \left(\log x \right)^\prime \right]_{x=0}= 0
\end{equation}
and we will be able to understand its sense graphycally.
By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.
(7): We shall introduce the typical division by zero calculus.
For the integral
\begin{equation}
\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),
\end{equation}
we obtain, by the division by zero,
\begin{equation}
\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.
\end{equation}
We will consider the fundamental ordinary differential equations
\begin{equation}
x^{\prime \prime}(t) =g -kx^{\prime}(t)
\end{equation}
with the initial conditions
\begin{equation}
x(0) = -h, x^{\prime}(0) =0.
\end{equation}
Then we have the solution
\begin{equation}
x(t) = \frac{g}{k}t + \frac{g(e^{-kt}- 1)}{k^2} - h.
\end{equation}
Then, for $k=0$, we obtain, immediately, by the division by zero
\begin{equation}
x(t) = \frac{1}{2}g t^2 -h.
\end{equation}
In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l'Hôpital's rule.
(8): When we apply the division by zero to functions, we can consider, in general, many ways. For example,
for the function $z/(z-1)$, when we insert $z=1$ in numerator and denominator, we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.
\end{equation}
However,
from the identity --
the Laurent expansion around $z=1$,
\begin{equation}
\frac{z}{z-1} = \frac{1}{z-1} + 1,
\end{equation}
we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = 1.
\end{equation}
For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.
\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various
physical problems
containing the division by zero. Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.
Note that the Big Bang also may be related to the division by zero like the blackholes.
\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now, we should arrange new computer systems in order not to meet the division by zero trouble in computer systems.
By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems.
\section{General ideas on the universe}
The division by zero may be related to religion, philosophy and the ideas on the universe, and it will creat a new world. Look the new world introduced.
\bigskip
We are standing on a new generation and in front of the new world, as in the discovery of the Americas. Should we push the research and education on the division by zero?
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics, {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.
\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).
\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6, 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt
\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
\bibitem{mos}
H. Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
International Journal of Mathematics and Computation
(in press).
\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA
\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus,
IAENG International J. of Applied Math., {\bf 45}(2015): IJAM 45 1 06.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.
\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.
\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.
\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.
\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.
\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.
\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.
\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.
\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.
\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.
\bibitem{ann293}
Announcement 293 (2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.
\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.
\end{thebibliography}
\end{document}
0 件のコメント:
コメントを投稿