Ausstellung zum 350. Geburtstag von Basler Pionier Bernoulli
Anlässlich des 350. Geburtstags von Johann I Bernoulli widmet sich eine kleine Ausstellung im Museum für Geschichte des Historischen Museums Basel dem Wirken und der internationalen Vernetzung des weltberühmten Mathematikers. Johann I Bernoulli zählt zusammen mit seinem Bruder Jacob und seinem Sohn Daniel zum glänzenden "Dreigestirn der Mathematik" in Basel.
Die in Zusammenarbeit mit der Universitätsbibliothek Basel gezeigte Schau präsentiert neben der Gesamtausgabe von Bernoullis Schriften u.a. seine Diplome aus Berlin, Paris und St. Petersburg, seinen handschriftlichen Lebenslauf sowie ein Porträt. Die Ausstellung ist bis 12. November 2017 zu sehen.
Als Sohn einer Basler Kaufmannsfamilie erschloss sich Johann Bernoulli zusammen mit seinem Bruder ab 1684 autodidaktisch die damals noch rätselhafte Infinitesimalmathematik, die Gottfried Wilhelm Leibniz (1646-1716) erfunden hatte. Bernoulli baute deren Methoden aus und löste mit ihnen schwierigste Probleme in den Bereichen Mathematik, Physik und Astronomie. Als Professor der Mathematik in Groningen (1695-1705) und Basel (1705-1748) machte Bernoulli zudem in Vorlesungen, Publikationen und Briefwechseln die Leibnizsche Mathematik lehr- und lernbar. Damit wurde er – nicht zuletzt auch über zahlreiche prominente Schüler wie Leonhard Euler – zum Pionier der Differential- und Integralrechnung in Europa.
とても興味深く読みました:
再生核研究所声明366(2017.5.16)微分方程式論の不備 ― 不完全性
(2017.5.14.9 時頃 山間部を散歩している時に 自然に構想が湧いた。)
数学の論理の厳格さ、厳密性は ジョルダンの閉曲線定理 が有名であるが、デデキンドの連続性公理、ワイエルシュトラスの最大値、最小値の存在定理、中間値の定理なども有名である。数学専攻学生の初期における ゼミナールの指導精神は、厳格な論理的思考の訓練にあると考えられる。この態度は 数学者の精神の基礎で、世情でも数学者との論争は手ごわいと見られているのではないだろうか。論理に隙や飛躍がないからである。逆に見ると、数学者が確立した理論は 恰も不滅の、不変の真理のように思われている、考えられているのではないだろうか。
この観点で、日本の著名な代表著書 高木貞治氏の解析概論は、模範的な数学書で、完璧な記述でまるで芸術作品のようである。
年々数学の著書が数多く出版されているが、著者たちは まずは、間違いのない記述に気を遣ってきていると考えられる。
ここ2年くらい、ゼロ除算の発見で、主に初等数学、学部レベルの教科書を相当参照してきている。実際、ゼロ除算が 数学にどのような影響を与えるかの基礎を見るには、基礎的な数学への関係を見れば、基本的な状況が捉えられると考えたからである。
ゼロ除算の影響は、初等幾何学、解析幾何学、線形代数学、微積分学、微分方程式、複素解析学、力学など広範囲に及び、初等数学全般に及ぶことが明らかにされてきた。
ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられるから、ただでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1
-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
1/0=0、0/0=0、z/0=0
再生核研究所声明365(2017.5.12)目も眩むほど素晴らしい研究課題 ― ゼロ除算
(2017.5.11.4:45 頃 目を覚ましたら、突然表題とその構想が情念として湧いてきたので、そのまま 書き留めて置きたい。)
そもそもゼロ除算とは、ゼロで割る問題であるが、ゼロの発見者、算術の確立者が既に 当時、0/0=0としていたにも関わらず(Brahmagupta (598 - 668 ?). defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628))、1300年以上もそれは間違いであるとして、現在に至っている。最近の知見によれば、それは 実は当たり前で、現代数学の初歩的な部分における大きな欠落で、現代数学の初歩部分は相当な修正、補充が要求されている。問題は、無限の彼方に対する概念が 無限と考えられていたのが 実はゼロであったとなり、ユークリッド幾何学の欠落部分が存在し、強力な不連続性が現れて、アリストテレスの世界観に反する世界が現れてきたことである。超古典的結果の修正、補完、新しい世界の出現である。
初等数学は 無限の概念や勾配が関係する部分で大きな変更が必要であり、2次曲線論ですら 修正が要求される。多くの物理学や数理科学に現れる公式において 分母がゼロのところで、新しい知見を探す、考えることができる。
ところで、数学とは何だろうかと問い、その中で、良い結果とは、
基本的であること、
美しいこと、
世の中に良い影響を与えること、
上記の観点で、想い出されるのは、ピタゴラスの定理、アインシュタインの公式、ニュートンの万有引力の公式や運動の法則、少し、高級であるが 神秘律 オイラーの公式 などである。
この観点で ゼロ除算の公式
1/0=0/0=z/0=0
を掲げれば、その初歩的な意味とともに 神秘的に深い意味 を知って、慄然とするのではないだろうか。それゆえにゼロ除算の研究は 世界史的な事件であり、世界観に大きな影響を与える。ゼロ除算は初等部分から 神秘律に至る雄大な研究分野であると言える。
探そうゼロ除算、究めようゼロ除算の意義。神の意思を追求しよう。
ゼロ除算は、中学生からはおろか、小学生にも分かって 楽しめる数学である。実際、道脇愛羽さん(当時6歳)は、ゼロ除算の発見後3週間くらいで、ゼロ除算は当たり前と理由を付けて、述べていた。他方、多くの大学教授は 1年を遥かに越えても、理解できず、誤解を繰り返している面白い数学である。世界の教科書、学術書は大きく変更されると考えられる。多くの人に理解され、影響を与える研究課題は、世に稀であると言える。
以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1
-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
1/0=0、0/0=0、z/0=0
再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。
そもそも、ニュートン、ダーウィンの時代とは 中世の名残を多く残し、宗教の存在は世界観そのものの基礎に有ったと言える。それで、アリストテレスの世界観や聖書に反して 天動説に対して地動説を唱えるには それこそ命を掛けなければ主張できないような時代背景が 存在していた。
そのような時に世の運動、地上も、天空も、万有を支配する法則が存在するとの考えは それこそ、世界観の大きな変更であり、人類に与えた影響は計り知れない。進化論 人類も動物や生物の進化によるものであるとの考えは、 人間そのものの考え方、捉え方の基本的な変更であり、運動法則とともに科学的な思考、捉え方が世界観を根本的に変えてきたと考えられる。勿論、自然科学などの基礎として果たしている役割の大きさを考えると、驚嘆すべきことである。
人生とは何か、人間とは何か、― 世の中には秩序と法則があり、人間は作られた存在で
その上に 存在している。如何に行くべきか、在るべきかの基本は その法則と作られた存在の元、原理を探し、それに従わざるを得ないとなるだろう。しかしながら、狭く捉えて 唯物史観などの思想も生んだが、それらは、心の問題、生命の神秘的な面を過小評価しておかしな世相も一時は蔓延ったが、自然消滅に向かっているように見える。
自然科学も生物学も目も眩むほどに発展してきている。しかしながら、人類未だ成長していないように感じられるのは、止むことのない抗争、紛争、戦争、医学などの驚異的な発展にも関わらず、人間存在についての掘り下げた発展と進化はどれほどかと考えさせられ、昔の人の方が余程人間らしい人間だったと思われることは 多いのではないだろうか。
上記二人の巨人の役割を、自然科学の基礎に大きな影響を与えた人と捉えれば、我々は一段と深く、巨人の拓いた世界を深めるべきではないだろうか。社会科学や人文社会、人生観や世界観にさらに深い影響を与えると、与えられると考える。
ニュートンの作用、反作用の運動法則などは、人間社会でも、人間の精神、心の世界でも成り立つ原理であり、公正の原則の基礎(再生核研究所声明 1 (2007/1/27): 美しい社会はどうしたら、できるか、美しい社会とは)にもなる。 自国の安全を願って軍備を強化すれば相手国がより、軍備を強化するのは道理、法則のようなものである。慣性の法則、急には何事でも変えられない、移行処置や時間的な猶予が必要なのも法則のようなものである。力の法則 変化には情熱、エネルギー,力が必要であり、変化は人間の本質的な要求である。それらはみな、社会や心の世界でも成り立つ原理であり、掘り下げて学ぶべきことが多い。ダーウィンの進化論については、人間はどのように作られ、どのような進化を目指しているのかと追求すべきであり、人間とは何者かと絶えず問うて行くべきである。根本を見失い、個別の結果の追求に明け暮れているのが、現在における科学の現状と言えるのではないだろうか。単に盲目的に夢中で進んでいる蟻の大群のような生態である。広い視点で見れば、経済の成長、成長と叫んでいるが、地球規模で生態系を環境の面から見れば、癌細胞の増殖のような様ではないだろうか。人間の心の喪失、哲学的精神の欠落している時代であると言える。
以 上
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。
ニュートン、ダーウィンの大きな影響を纏めたので(声明314)今回はユークリッド幾何学の影響について触れたい。
ユークリッド幾何学の建設について、ユークリッド自身(アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。)が絶対的な幾何学の建設に努力した様は、『新しい幾何学の発見―ガウス ボヤイ ロバチェフスキー』リワノワ 著松野武 訳1961 東京図書 に見事に描かれており、ここでの考えはその著書に負うところが大きい。
ユークリッドは絶対的な幾何学を建設するためには、絶対的に正しい基礎、公準、公理に基づき、厳格な論理によって如何なる隙や曖昧さを残さず、打ち立てられなければならないとして、来る日も来る日も、アレクサンドリアの海岸を散歩しながら ユークリッド幾何学を建設した(『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた[1][2][3]。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学、透視図法、円錐曲線論、球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。)。
ユークリッド幾何学、原論は2000年以上も越えて多くの人に学ばれ、あらゆる論理的な学術書の記述の模範、範として、現在でもその精神は少しも変わっていない、人類の超古典である。― 少し、厳密に述べると、ユークリッド幾何学の基礎、いわゆる第5公準、いわゆる平行線の公理は徹底的に検討され、2000年を経て公理系の考えについての考えは改められ― 公理系とは絶対的な真理という概念ではなく、矛盾のない仮定系である ― 、非ユークリッド幾何学が出現した。論理的な厳密性も徹底的に検討がなされ、ヒルベルトによってユークリッド幾何学は再構成されることになった。非ユークリッド幾何学の出現過程についても上記の著書に詳しい。
しかしながら、ユークリッド幾何学の実態は少しも変わらず、世に絶対的なものがあるとすれば、それは数学くらいではないだろうかと人類は考えているのではないだろうか。
数学の不可思議さに想いを致したい(しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
)。
― 数学は公理系によって定まり、そこから、論理的に導かれる関係の全体が一つの数学の様 にみえる。いま予想されている関係は、そもそも人間には無関係に確定しているようにみえる。その数学の全体はすべて人間には無関係に存在して、確定しているようにみえる。すなわち、われわれが捉えた数学は、人間の要求や好みで発見された部分で、その全貌は分か らない。抽象的な関係の世界、それはものにも、時間にも、エネルギーにも無関係で、存在 している。それではどうして、存在して、数学は美しいと感動させるのであろうか。現代物理学は宇宙全体の存在した時を述べているが、それでは数学はどうして存在しているのであろうか。宇宙と数学は何か関係が有るのだろうか。不思議で 不思議で仕方がない。数学は絶対で、不変の様にみえる。時間にも無関係であるようにみえる。数学と人間の関係は何だ ろうか。―
数学によって、神の存在を予感する者は 世に多いのではないだろうか。
以 上
0 件のコメント:
コメントを投稿