2017年5月31日水曜日

Copernicus, the revolutionary who feared changing the world

Copernicus, the revolutionary who feared changing the world

 
The sages had placed the Earth at the centre of the universe for nearly two thousand years until Copernicus arrived on the scene and let it spin like a top around the Sun, as we know it today. It is said that on his deathbed, this Polish clergyman was finally able to see his book printed, the labour to which he had dedicated half his life: De revolutionibus (On the revolutions of the celestial orbs). Nicholas Copernicus (1473-1543) was not the first to explain that everything revolves around the Sun, but he did it so thoroughly, in that book, that he initiated a scientific revolution against the universal order established by the greatest scholar ever known, the Greek philosopher Aristotle.
The planisphere of Copernicus, depicted by Andreas Cellarius in his “Harmonia macrocosmica” (1661). Source: University of Utrecht
Aristotle said in the fourth century BC that a mystical force moved the Sun and the planets in perfect circles around the Earth. Although this was much to the taste of the Church, in order to fit this idea with the strange movements of the planets seen in the sky, astronomers had to resort to the mathematical juggling that another Greek, Ptolemy, invented in the second century AD. Thus Copernicus started to look for something simpler, almost at the same time that Michelangelo undertook another great project, that of decorating the ceiling of the Sistine Chapel.
Copernicus monument by Bertel Thorvaldsen in Warsaw. Credit: Szczebrzeszynski
Copernicus had a full Renaissance résumé: studies in medicine, art, mathematics, canon law and philosophy; experience as an economist and a diplomat; and also a good position as an ecclesiastical official. But his greatest passion was astronomy. He had discovered it while studying at the best universities in Italy, which were then buzzing with new ideas that constantly surfaced… one of his professors even dared to doubt Aristotle’s theories. Returning to his quiet life in Poland, Copernicus set out to observe the sky. By 1514, he had already written a sketch of his theory, although he did not publish it for fear of being condemned as a heretic and also because he was a perfectionist. He spent 15 more years repeating his calculations, diagrams and observations with the naked eye, prior to the invention of the telescope.

The Solar System like an athletics track

He could see that sometimes appearances deceive: that if we see the Sun (and the starry sky) rotate, this is in fact due to the daily rotation of the Earth itself; that if the Sun repeats its path each year, crossing the constellations of the zodiac, this is caused by the movement of the Earth around the star; that if the planets make strange dances in the sky, it is because we are seeing them revolve around the Sun from the perspective of another planet in motion. Copernicus was the first to recite them in order: Mercury, Venus, Earth, Mars, Jupiter and Saturn, the 6 planets that were then known. Travelling along its fixed course, as if the Solar System were an athletics track, the Earth goes faster than the planets of the outer lanes and each year it gains a lap. During the months of overtaking, we get the feeling that the other planet is slowing down, then reversing, before moving forward again when we leave it behind, as happens when we overtake another car on the road.
“Astronomer Copernicus, conversation with God” (1872), by Jan Matejko: Source: Jagiellonian University Museum.
When Copernicus finally decided to publish his theory, the book’s publisher softened it in the prologue: he said that there were “only easier mathematics” for predicting the movements of the planets, and not a whole new way of looking at the reality of the universe. But this was understood as a challenge to Aristotle, to the Church, and to common sense. If the Earth moves and rotates so fast, why do things fall straight and not follow a curve? And why are we not thrown into space? We would have to wait for Kepler, Galileo and Newton to answer these questions. It would be 150 years before the Copernican revolution triumphed, and the world finally admitted that the Earth was just one more spinning top.
Francisco Doménech for Ventana al Conocimiento

とても興味深く読みました:

再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上


再生核研究所声明3672017.5.18)数学の真実を求める方、数学の研究と教育に責任を感じる方へ

(「明日ありと 思う心の仇桜 夜半に嵐の 吹かぬものかは」 ― 親鸞聖人)
そもそも数学とは何だろうかと問うことは大事である。しかしながら、生きる意味を問うことは より根源的で大事な問いである。数学についても人生についても述べてきた:(No.81、2012年5月(PDFファイル432キロバイト) -数学のための国際的な社会...www.jams.or.jp/kaiho/kaiho-81.pdf)。
数学とは、公理系、仮定系を設定すると、このようなことが言えるというものである。公理系の上に、いろいろな概念や定義を導入して数学は発展するがその全貌や本質を捉えることは何時まで経っても人間の能力を超えた存在で不可能であろう。しかしながら、人それぞれの好みを越えて、完成された理論は人間を越えて存在する客観性を有すると信じられている。万有引力の法則など物理法則より数学の理論は不変で確かな存在であろう。
数学が関係の編みのようなものであると見れば、数学の発展の先や全貌は 人間を越えて本質的には存在すると言える。例えばニュートンの万有引力の発見は、物理学の発展から必然的と言えるが、数学の発展の先はそれよりも必然的であると考えられる。その意味では、数学では特に要求されない限り、じっくりと落ち着いて楽しむように研究を進められるであろう。
ところで、ゼロで割る問題、ゼロ除算であるが、これは誠に奇妙な歴史的な事件であると言える。
ゼロで割れないは 小学校以来の世界の常識であり、アリストテレス以来の考えであると言う。オイラーやアインシュタインなども直接関わり、数学的には確定していたが、不可能性に対する興味とともに、計算機科学と相対性の理論の関係で今でも議論が続けられている。
ところが、誠に奇妙な事実が存在する。ゼロの発見者、マイナスの数も考え、算術の四則演算を確立されたBrahmagupta (598 -668 ?) は 既に、そこで628年、0/0=0 と定義していたという。しかしながら、それは間違いであると 今でも判断されていて今日に至っている。今でもゼロ除算について諸説が有って、世界やグーグルの世界でも混乱している。何十年も研究を続けて、本を出版したり、論文を公表している者が4,5人、あるいはグループで研究している者もいるが、それらは間違いである、不適当であると説得を続けている。ゼロ除算について無駄な議論や情報が世界に氾濫していると言える。
再生核研究所では、ゼロ除算発見3周年を経過し、広く議論してきたので、ゼロ除算の発見を宣言している(Announcement 362: Discovery of the division by zero as $0/0=1/0=z/0=0$ (2017.5.5)})。詳しい解説も3年間続け
(数学基礎学力研究会のホームページ
URL
、論文も発表、学会、国際会議などでも報告してきている。
何と創始者の結果は実は正しく、適当であることが沢山の数学の具体的な例と発展から、明らかにされてきた。ところがゼロ除算は、アリストテレスの連続性の概念を変え、2000年以上の伝統を有するユークリッド空間に全く新しい面が加わり、現代数学の初歩全般に大きな影響を与えることが分かってきた。
我々の空間の認識は間違っており我々が学んでいる数学は、基本的なところで、欠落していて、真実とはかなり程遠く、実は数学はより完全でもっと美しいことが分かってきた。我々は年々不完全で不適当な数学を教えていると言える。
このような多くの大きな変化にはとても個人では対応できず、対応には大きな力が必要であるから、数学の愛好者や、研究者、教育者などの積極的な協力、教育、研究活動への参画、理解、援助などをお願い致したい。ゼロ除算の歴史は 人類の恥になるだろう。人々はゼロ除算の発展から、人間とはどのようなものかを沢山 学べるのではないだろうか。
以 上

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0



再生核研究所声明3682017.5.19)ゼロ除算の意義、本質

ゼロ除算の本質、意義について、既に述べているが、参照すると良くまとめられているので、初めに復習して、新しい視点を入れたい。

再生核研究所声明3592017.3.20) ゼロ除算とは何か ― 本質、意義

ゼロ除算の理解を進めるために ゼロ除算とは何か の題名で、簡潔に表現して置きたい。 構想と情念、想いが湧いてきたためである。
基本的な関数y=1/x を考える。 これは直角双曲線関数で、原点以外は勿論、値、関数が定義されている。問題はこの関数が、x=0  で どうなっているかである。結論は、この関数の原点での値を ゼロと定義する ということである。 定義するのである。定義であるから勝手であり、従来の定義や理論に反しない限り、定義は勝手であると言える。原点での値を明確に定義した理論はないから、この定義は良いと考えられる。それを、y=1/0=0 と記述する。ゼロ除算は不可能であるという、数学の永い定説に従って、1/0 の表記は学術書、教科書にもないから、1/0=0 の記法は 形式不変の原理、原則 にも反しないと言える。― 多くの数学者は注意深いから、1/0=\infty の表記を避けてきたが、想像上では x が 0 に近づいたとき、限りなく 絶対値が大きくなるので、複素解析学では、表現1/0=\infty は避けても、1/0=\infty と考えている事は多い。(無限大の記号がない時代、アーベルなどもそのような記号を用いていて、オイラーは1/0=\inftyと述べ、それは間違いであると指摘されてきた。 しかしながら、無限大とは何か、数かとの疑問は 続いている。)。ここが大事な論点である。近づいていった極限値がそこでの値であろうと考えるのは、極めて自然な発想であるが、現代では、不連続性の概念 が十分確立されていて、極限値がそこでの値と違う例は、既にありふれている。― アリストテレスは 連続性の世界観をもち、特にアリストテレスの影響を深く受けている欧米の方は、この強力な不連続性を中々受け入れられないようである。無限にいくと考えられてきたのが突然、ゼロになるという定義になるからである。 しかしながら、関数y=1/xのグラフを書いて見れば、原点は双曲線のグラフの中心の点であり、美しい点で、この定義は魅力的に見えてくるだろう。
定義したことには、それに至るいろいろな考察、経過、動機、理由がある。― 分数、割り算の意味、意義、一意性問題、代数的な意味づけなどであるが、それらは既に数学的に確立しているので、ここでは触れない。
すると、定義したからには、それがどのような意味が存在して、世の中に、数学にどのような影響があるかが、問題になる。これについて、現在、初等数学の学部レベルの数学をゼロ除算の定義に従って、眺めると、ゼロ除算、すなわち、 分母がゼロになる場合が表現上現れる広範な場合に 新しい現象が発見され、ゼロ除算が関係する広範な場合に大きな影響が出て、数学は美しく統一的に補充,完全化されることが分かった。それらは現在、380件以上のメモにまとめられている。しかしながら、世界観の変更は特に重要であると考えられる:

複素解析学で無限遠点は その意味で1/0=0で、複素数0で表されること、アリストテレスの連続性の概念に反し、ユークリッド空間とも異なる新しい空間が 現れている。直線のコンパクト化の理想点は原点で、全ての直線が原点を含むと、超古典的な結果に反する。更に、ゼロと無限の関係が明らかにされてきた。
ゼロ除算は、現代数学の初等部分の相当な変革を要求していると考えられる。
以 上

ゼロ除算の代数的な意義は、山田体の概念で体にゼロ除算を含む構造の入れ方、一般に体にゼロ除算の概念が入れられるが、代数的な発展については 専門外で、触れられない。ただ、計算機科学でゼロ除算と代数的な構造について相当議論している研究者がいる。
ゼロ除算の解析学的な意義は、従来孤立特異点での研究とは、孤立点での近傍での研究であり、正確に述べれば 孤立特異点そのものでの研究はなされていないと考えられる。
なぜならば、特異点では、ゼロ分のとなり、分子がゼロの場合には ロピタルの定理や微分法の概念で 極限値で考えてきたが、ゼロ除算は、一般に分子がゼロでない場合にも意味を与え、極限値でなくて、特異点で 何時でも有限確定値を指定できる ― ゼロ除算算法初めて、特異点そのものの世界に立ち入ったと言える。従来は孤立特異点を除いた世界で 数学を考えてきたと言える。その意味でゼロ除算は 全く新しい数学、世界であると言える。典型的な結果は tan(\pi/2) =0で、y軸の勾配がゼロであることである。
ゼロ除算の幾何学的な意義は、ユークリッド空間のアレクサンドロフの1点コンパクト化に、アリストテレスの連続性の概念でない、強力な不連続性が現れたことで、全く新しい空間の構造が現れ、幾何学の無限遠点に関係する部分に全く新規な世界が現れたことである。所謂無限遠点が数値ゼロで、表現される。
さらに、およそ無限量と考えられたものが、実は、数値ゼロで表現されるという新しい現象が発見された。tan(\pi/2) =0の意味を幾何学的に考えると、そのことを表している。これはいろいろな恒等式に新しい要素を、性質を顕にしている。ゼロが、不可能性を表現したり、基準を表すなど、ゼロの意義についても新しい概念が現れている。

以 上

ゼロ除算の詳しい解説を次で行っている:
(数学基礎学力研究会のホームページ
URL
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 


1/0=0、0/0=0、z/0=0



再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.

0 件のコメント:

コメントを投稿