2017年5月24日水曜日

Cavalieri's quadrature formula

Cavalieri's quadrature formula

 
In calculusCavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral
{\displaystyle \int _{0}^{a}x^{n}\,dx={\tfrac {1}{n+1}}\,a^{n+1}\qquad n\geq 0,}
and generalizations thereof. This is the definite integral form; the indefinite integral form is:
{\displaystyle \int x^{n}\,dx={\tfrac {1}{n+1}}\,x^{n+1}+C\qquad n\neq -1.}
There are additional forms, listed below. Together with the linearity of the integral, this formula allows one to compute the integrals of all polynomials.
The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = xn. Traditionally important cases are y = x2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.

Contents

  [hide

Forms[edit]

Negative n[edit]

For negative values of n (negative powers of x), there is a singularity at x = 0, and thus the definite integral is based at 1, rather than 0, yielding:
{\displaystyle \int _{1}^{a}x^{n}\,dx={\tfrac {1}{n+1}}(a^{n+1}-1)\qquad n\neq -1.}
Further, for negative fractional (non-integer) values of n, the power xn is not well-defined, hence the indefinite integral is only defined for positive x. However, for n a negative integer the power xn is defined for all non-zero x, and the indefinite integrals and definite integrals are defined, and can be computed via a symmetry argument, replacing x by −x, and basing the negative definite integral at −1.
Over the complex numbers the definite integral (for negative values of n and x) can be defined via contour integration, but then depends on choice of path, specifically winding number – the geometric issue is that the function defines a covering space with a singularity at 0.

n = −1[edit]

There is also the exceptional case n = −1, yielding a logarithm instead of a power of x:
{\displaystyle \int _{1}^{a}{\frac {1}{x}}\,dx=\ln a,}
{\displaystyle \int {\frac {1}{x}}\,dx=\ln x+C,\qquad x>0}
(where "ln" means the natural logarithm, i.e. the logarithm to the base e = 2.71828...).
The improper integral is often extended to negative values of x via the conventional choice:
{\displaystyle \int {\frac {1}{x}}\,dx=\ln |x|+C,\qquad x\neq 0.}
Note the use of the absolute value in the indefinite integral; this is to provide a unified form for the integral, and means that the integral of this odd function is an even function, though the logarithm is only defined for positive inputs, and in fact, different constant values of C can be chosen on either side of 0, since these do not change the derivative. The more general form is thus:[1]
{\displaystyle \int {\frac {1}{x}}\,dx={\begin{cases}\ln |x|+C^{-}&x<0\\\ln |x|+C^{+}&x>0\end{cases}}}
Over the complex numbers there is not a global antiderivative for 1/x, due this function defining a non-trivial covering space; this form is special to the real numbers.
Note that the definite integral starting from 1 is not defined for negative values of a, since it passes through a singularity, though since 1/x is an odd function, one can base the definite integral for negative powers at −1. If one is willing to use improper integrals and compute the Cauchy principal value, one obtains {\displaystyle \int _{-c}^{c}{\frac {1}{x}}\,dx=0,} which can also be argued by symmetry (since the logarithm is odd), so {\displaystyle \int _{-1}^{1}{\frac {1}{x}}\,dx=0,} so it makes no difference if the definite integral is based at 1 or −1. As with the indefinite integral, this is special to the real numbers, and does not extend over the complex numbers.

Alternative forms[edit]

The integral can also be written with indexes shifted, which simplify the result and make the relation to n-dimensional differentiation and the n-cube clearer:
{\displaystyle \int _{0}^{a}x^{n-1}\,dx={\tfrac {1}{n}}a^{n}\qquad n\geq 1.}
{\displaystyle \int x^{n-1}\,dx={\tfrac {1}{n}}x^{n}+C\qquad n\neq 0.}
More generally, these formulae may be given as:
{\displaystyle \int (ax+b)^{n}dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
{\displaystyle \int {\frac {1}{ax+b}}dx={\frac {1}{a}}\ln \left|ax+b\right|+C}
More generally:
{\displaystyle \int {\frac {1}{ax+b}}\,dx={\begin{cases}{\frac {1}{a}}\ln \left|ax+b\right|+C^{-}&x<-b/a\\{\frac {1}{a}}\ln \left|ax+b\right|+C^{+}&x>-b/a\end{cases}}}

Proof[edit]

The modern proof is to use an anti-derivative: the derivative of xn is shown to be nxn−1 – for non-negative integers. This is shown from the binomial formula and the definition of the derivative – and thus by the fundamental theorem of calculus the antiderivative is the integral. This method fails for {\displaystyle \int {\frac {1}{x}}\,dx,} as the candidate antiderivative is {\displaystyle {\frac {1}{0}}\cdot x^{0}}, which is undefined due to division by zero. The logarithm function, which is the actual antiderivative of 1/x, must be introduced and examined separately.
The derivative {\displaystyle (x^{n})'=nx^{n-1}} can be geometrized as the infinitesimal change in volume of the n-cube, which is the area of n faces, each of dimension n − 1.
Integrating this picture – stacking the faces – geometrizes the fundamental theorem of calculus, yielding a decomposition of the n-cube into n pyramids, which is a geometric proof of Cavalieri's quadrature formula.
For positive integers, this proof can be geometrized:[2] if one considers the quantity xn as the volume of the n-cube (the hypercube in n dimensions), then the derivative is the change in the volume as the side length is changed – this is xn−1, which can be interpreted as the area of n faces, each of dimension n − 1 (fixing one vertex at the origin, these are the n faces not touching the vertex), corresponding to the cube increasing in size by growing in the direction of these faces – in the 3-dimensional case, adding 3 infinitesimally thin squares, one to each of these faces. Conversely, geometrizing the fundamental theorem of calculus, stacking up these infinitesimal (n − 1) cubes yields a (hyper)-pyramid, and n of these pyramids form the n-cube, which yields the formula. Further, there is an n-fold cyclic symmetry of the n-cube around the diagonal cycling these pyramids (for which a pyramid is a fundamental domain). In the case of the cube (3-cube), this is how the volume of a pyramid was originally rigorously established: the cube has 3-fold symmetry, with fundamental domain a pyramids, dividing the cube into 3 pyramids, corresponding to the fact that the volume of a pyramid is one third of the base times the height. This illustrates geometrically the equivalence between the quadrature of the parabola and the volume of a pyramid, which were computed classically by different means.
Alternative proofs exist – for example, Fermat computed the area via an algebraic trick of dividing the domain into certain intervals of unequal length;[3] alternatively, one can prove this by recognizing a symmetry of the graph y = xn under inhomogeneous dilation (by d in the x direction and dn in the y direction, algebraicizing the n dimensions of the y direction),[4] or deriving the formula for all integer values by expanding the result for n = −1 and comparing coefficients.[5]

History[edit]

Archimedes computed the area of parabolic segments in his The Quadrature of the Parabola.
A detailed discussion of the history, with original sources, is given in (Laubenbacher & Pengelley 1998, Chapter 3, Analysis: Calculating Areas and Volumes); see also history of calculus and history of integration.
The case of the parabola was proven in antiquity by the ancient Greek mathematician Archimedes in his The Quadrature of the Parabola (3rd century BC), via the method of exhaustion. Of note is that Archimedes computed the area inside a parabola – a so-called "parabolic segment" – rather than the area under the graph y = x2, which is instead the perspective of Cartesian geometry. These are equivalent computations, but reflect a difference in perspective. The Ancient Greeks, among others, also computed the volume of a pyramid or cone, which is mathematically equivalent.
In the 11th century, the Islamic mathematician Ibn al-Haytham (known as Alhazen in Europe) computed the integrals of cubics and quartics (degree three and four) via mathematical induction, in his Book of Optics.[6]
The case of higher integers was computed by Cavalieri for n up to 9, using his method of indivisibles (Cavalieri's principle).[7] He interpreted these as higher integrals as computing higher-dimensional volumes, though only informally, as higher-dimensional objects were as yet unfamiliar.[8] This method of quadrature was then extended by Italian mathematician Evangelista Torricelli to other curves such as the cycloid, then the formula was generalized to fractional and negative powers by English mathematician John Wallis, in his Arithmetica Infinitorum (1656), which also standardized the notion and notation of rational powers – though Wallis incorrectly interpreted the exceptional case n = −1 (quadrature of the hyperbola) – before finally being put on rigorous ground with the development of integral calculus.
Prior to Wallis's formalization of fractional and negative powers, which allowed explicit functions {\displaystyle y=x^{p/q},} these curves were handled implicitly, via the equations {\displaystyle x^{p}=ky^{q}} and {\displaystyle x^{p}y^{q}=k} (p and q always positive integers) and referred to respectively as higher parabolae and higher hyperbolae (or "higher parabolas" and "higher hyperbolas"). Pierre de Fermat also computed these areas (except for the exceptional case of −1) by an algebraic trick – he computed the quadrature of the higher hyperbolae via dividing the line into equal intervals, and then computed the quadrature of the higher parabolae by using a division into unequal intervals, presumably by inverting the divisions he used for hyperbolae.[9] However, as in the rest of his work, Fermat's techniques were more ad hoc tricks than systematic treatments, and he is not considered to have played a significant part in the subsequent development of calculus.
Of note is that Cavalieri only compared areas to areas and volumes to volumes – these always having dimensions, while the notion of considering an area as consisting of units of area (relative to a standard unit), hence being unitless, appears to have originated with Wallis;[10][11] Wallis studied fractional and negative powers, and the alternative to treating the computed values as unitless numbers was to interpret fractional and negative dimensions.
The exceptional case of −1 (the standard hyperbola) was first successfully treated by Grégoire de Saint-Vincent in his Opus geometricum quadrature circuli et sectionum coni (1647), though a formal treatment had to wait for the development of the natural logarithm, which was accomplished by Nicholas Mercator in his Logarithmotechnia (1668).

とても興味深く読みました:

再生核研究所声明3682017.5.19)ゼロ除算の意義、本質

ゼロ除算の本質、意義について、既に述べているが、参照すると良くまとめられているので、初めに復習して、新しい視点を入れたい。

再生核研究所声明3592017.3.20) ゼロ除算とは何か ― 本質、意義

ゼロ除算の理解を進めるために ゼロ除算とは何か の題名で、簡潔に表現して置きたい。 構想と情念、想いが湧いてきたためである。
基本的な関数y=1/x を考える。 これは直角双曲線関数で、原点以外は勿論、値、関数が定義されている。問題はこの関数が、x=0  で どうなっているかである。結論は、この関数の原点での値を ゼロと定義する ということである。 定義するのである。定義であるから勝手であり、従来の定義や理論に反しない限り、定義は勝手であると言える。原点での値を明確に定義した理論はないから、この定義は良いと考えられる。それを、y=1/0=0 と記述する。ゼロ除算は不可能であるという、数学の永い定説に従って、1/0 の表記は学術書、教科書にもないから、1/0=0 の記法は 形式不変の原理、原則 にも反しないと言える。― 多くの数学者は注意深いから、1/0=\infty の表記を避けてきたが、想像上では x が 0 に近づいたとき、限りなく 絶対値が大きくなるので、複素解析学では、表現1/0=\infty は避けても、1/0=\infty と考えている事は多い。(無限大の記号がない時代、アーベルなどもそのような記号を用いていて、オイラーは1/0=\inftyと述べ、それは間違いであると指摘されてきた。 しかしながら、無限大とは何か、数かとの疑問は 続いている。)。ここが大事な論点である。近づいていった極限値がそこでの値であろうと考えるのは、極めて自然な発想であるが、現代では、不連続性の概念 が十分確立されていて、極限値がそこでの値と違う例は、既にありふれている。― アリストテレスは 連続性の世界観をもち、特にアリストテレスの影響を深く受けている欧米の方は、この強力な不連続性を中々受け入れられないようである。無限にいくと考えられてきたのが突然、ゼロになるという定義になるからである。 しかしながら、関数y=1/xのグラフを書いて見れば、原点は双曲線のグラフの中心の点であり、美しい点で、この定義は魅力的に見えてくるだろう。
定義したことには、それに至るいろいろな考察、経過、動機、理由がある。― 分数、割り算の意味、意義、一意性問題、代数的な意味づけなどであるが、それらは既に数学的に確立しているので、ここでは触れない。
すると、定義したからには、それがどのような意味が存在して、世の中に、数学にどのような影響があるかが、問題になる。これについて、現在、初等数学の学部レベルの数学をゼロ除算の定義に従って、眺めると、ゼロ除算、すなわち、 分母がゼロになる場合が表現上現れる広範な場合に 新しい現象が発見され、ゼロ除算が関係する広範な場合に大きな影響が出て、数学は美しく統一的に補充,完全化されることが分かった。それらは現在、380件以上のメモにまとめられている。しかしながら、世界観の変更は特に重要であると考えられる:

複素解析学で無限遠点は その意味で1/0=0で、複素数0で表されること、アリストテレスの連続性の概念に反し、ユークリッド空間とも異なる新しい空間が 現れている。直線のコンパクト化の理想点は原点で、全ての直線が原点を含むと、超古典的な結果に反する。更に、ゼロと無限の関係が明らかにされてきた。
ゼロ除算は、現代数学の初等部分の相当な変革を要求していると考えられる。
以 上

ゼロ除算の代数的な意義は、山田体の概念で体にゼロ除算を含む構造の入れ方、一般に体にゼロ除算の概念が入れられるが、代数的な発展については 専門外で、触れられない。ただ、計算機科学でゼロ除算と代数的な構造について相当議論している研究者がいる。
ゼロ除算の解析学的な意義は、従来孤立特異点での研究とは、孤立点での近傍での研究であり、正確に述べれば 孤立特異点そのものでの研究はなされていないと考えられる。
なぜならば、特異点では、ゼロ分のとなり、分子がゼロの場合には ロピタルの定理や微分法の概念で 極限値で考えてきたが、ゼロ除算は、一般に分子がゼロでない場合にも意味を与え、極限値でなくて、特異点で 何時でも有限確定値を指定できる ― ゼロ除算算法初めて、特異点そのものの世界に立ち入ったと言える。従来は孤立特異点を除いた世界で 数学を考えてきたと言える。その意味でゼロ除算は 全く新しい数学、世界であると言える。典型的な結果は tan(\pi/2) =0で、y軸の勾配がゼロであることである。
ゼロ除算の幾何学的な意義は、ユークリッド空間のアレクサンドロフの1点コンパクト化に、アリストテレスの連続性の概念でない、強力な不連続性が現れたことで、全く新しい空間の構造が現れ、幾何学の無限遠点に関係する部分に全く新規な世界が現れたことである。所謂無限遠点が数値ゼロで、表現される。
さらに、およそ無限量と考えられたものが、実は、数値ゼロで表現されるという新しい現象が発見された。tan(\pi/2) =0の意味を幾何学的に考えると、そのことを表している。これはいろいろな恒等式に新しい要素を、性質を顕にしている。ゼロが、不可能性を表現したり、基準を表すなど、ゼロの意義についても新しい概念が現れている。

以 上

ゼロ除算の詳しい解説を次で行っている:
(数学基礎学力研究会のホームページ
URL
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 


1/0=0、0/0=0、z/0=0


再生核研究所声明3672017.5.18)数学の真実を求める方、数学の研究と教育に責任を感じる方へ
(「明日ありと 思う心の仇桜 夜半に嵐の 吹かぬものかは」 ― 親鸞聖人)
そもそも数学とは何だろうかと問うことは大事である。しかしながら、生きる意味を問うことは より根源的で大事な問いである。数学についても人生についても述べてきた:(No.81、2012年5月(PDFファイル432キロバイト) -数学のための国際的な社会...www.jams.or.jp/kaiho/kaiho-81.pdf)。
数学とは、公理系、仮定系を設定すると、このようなことが言えるというものである。公理系の上に、いろいろな概念や定義を導入して数学は発展するがその全貌や本質を捉えることは何時まで経っても人間の能力を超えた存在で不可能であろう。しかしながら、人それぞれの好みを越えて、完成された理論は人間を越えて存在する客観性を有すると信じられている。万有引力の法則など物理法則より数学の理論は不変で確かな存在であろう。
数学が関係の編みのようなものであると見れば、数学の発展の先や全貌は 人間を越えて本質的には存在すると言える。例えばニュートンの万有引力の発見は、物理学の発展から必然的と言えるが、数学の発展の先はそれよりも必然的であると考えられる。その意味では、数学では特に要求されない限り、じっくりと落ち着いて楽しむように研究を進められるであろう。
ところで、ゼロで割る問題、ゼロ除算であるが、これは誠に奇妙な歴史的な事件であると言える。
ゼロで割れないは 小学校以来の世界の常識であり、アリストテレス以来の考えであると言う。オイラーやアインシュタインなども直接関わり、数学的には確定していたが、不可能性に対する興味とともに、計算機科学と相対性の理論の関係で今でも議論が続けられている。
ところが、誠に奇妙な事実が存在する。ゼロの発見者、マイナスの数も考え、算術の四則演算を確立されたBrahmagupta (598 -668 ?) は 既に、そこで628年、0/0=0 と定義していたという。しかしながら、それは間違いであると 今でも判断されていて今日に至っている。今でもゼロ除算について諸説が有って、世界やグーグルの世界でも混乱している。何十年も研究を続けて、本を出版したり、論文を公表している者が4,5人、あるいはグループで研究している者もいるが、それらは間違いである、不適当であると説得を続けている。ゼロ除算について無駄な議論や情報が世界に氾濫していると言える。
再生核研究所では、ゼロ除算発見3周年を経過し、広く議論してきたので、ゼロ除算の発見を宣言している(Announcement 362: Discovery of the division by zero as $0/0=1/0=z/0=0$ (2017.5.5)})。詳しい解説も3年間続け
(数学基礎学力研究会のホームページ
URL
、論文も発表、学会、国際会議などでも報告してきている。
何と創始者の結果は実は正しく、適当であることが沢山の数学の具体的な例と発展から、明らかにされてきた。ところがゼロ除算は、アリストテレスの連続性の概念を変え、2000年以上の伝統を有するユークリッド空間に全く新しい面が加わり、現代数学の初歩全般に大きな影響を与えることが分かってきた。
我々の空間の認識は間違っており我々が学んでいる数学は、基本的なところで、欠落していて、真実とはかなり程遠く、実は数学はより完全でもっと美しいことが分かってきた。我々は年々不完全で不適当な数学を教えていると言える。
このような多くの大きな変化にはとても個人では対応できず、対応には大きな力が必要であるから、数学の愛好者や、研究者、教育者などの積極的な協力、教育、研究活動への参画、理解、援助などをお願い致したい。ゼロ除算の歴史は 人類の恥になるだろう。人々はゼロ除算の発展から、人間とはどのようなものかを沢山 学べるのではないだろうか。
以 上

0 件のコメント:

コメントを投稿