2017年12月16日土曜日

Intellect Over Politics: 'The Curious World of Samuel Pepys and John Evelyn'

Intellect Over Politics: 'The Curious World of Samuel Pepys and John Evelyn'

 
There is an amusing detail in The Curious World of Samuel Pepys and John Evelyn that is emblematic of the kind of intellectual passions that animated the educated elite of late 17th-century England. We learn that Henry Oldenburg, the first secretary of the Royal Society, had for many years carried on a bitter dispute with Robert Hooke, one of the great polymaths of the era whose name still appears to students of physics and biology. Was the root of their quarrel a personality clash, was it over money or property, over love, ego, values? Something simple and recognizable? The precise source of their conflict was none of the above exactly but is nevertheless revealing of a specific early modern English context: They were in dispute, Margaret Willes writes, "over the development of the balance-spring regulator watch mechanism."
This is the curious world opened up by the diaries and correspondence Samuel Pepys (1633 – 1703) and John Evelyn (1620 – 1706). Willes has not written a biography of either men but instead uses them as points of entry into this world, putting its personalities, habits of mind, and institutions into orbit around a particular kind of English intellectual adventurousness and curiosity. It's an account of an inquisitiveness inspired by a new principled approach to empirical discovery that is at the heart of the Scientific Revolution, as well as an account of new – and sometimes from a modern point of view quite ludicrous – levels of acquisitiveness enabled by colonialism and trade.
With Pepys and Evelyn, Willes has subjects that are both fairly typical Restoration-era (post-1660) educated men of means as well as differing enough from each other to illustrate the broad-mindedness that characterized their social circles. Both men either acquired or inherited wealth and were respected and accomplished in their own right – Pepys as a civil servant and administrator, Evelyn as a writer and civic-minded man of ideas. Both made modest and enduring contributions to the disciplines and organizations that interested them. Evelyn wrote influential texts on forestry, gardening, and the problem of coal pollution in London, for example, and Pepys was a tireless source of administrative support for the Royal Society in its financially insolvent early days. His name as President of the Royal Society from 1684-1686 appears on the title page of Isaac Newton's Philosophiae Naturalis Principia Mathematica (1687). Both men knew and worked with Christopher Wren, William Petty, Robert Hooke and others well remembered by posterity, but neither were themselves giants of science or innovation.
Yet as Willes observes at many points, Pepys and Evelyn and the scientists and virtuosi that circulated among them maintained long-lasting friendships and working relationships despite their respective political, religious, and cultural differences. And this was an era of pronounced and prolonged differences – Pepys and Evelyn observed the English Civil Wars (1642 – 1649) and its concomitant proliferation of radical religious groups, the execution of Charles I (1649), the establishing of the English Republic (1651 - 1660), the Restoration of the Monarchy, (1660), and the Popish Plot (1678 - 1681). The 17th century was electric with religious, political, and philosophical differences.
Pepys and Evelyn were both Anglican of opposite tendencies, the one hounded by accusations of Catholicism throughout his adult life, the other maintaining a streak of Puritanical austerity. The Royal Society's original fellows included invites from France and Holland as well as a Protestant Nonconformist and a Roman Catholic. The Society was not, however, altogether modern in its character. The founding statutes expressly excluded women from attending meetings. When Margaret Cavendish secured an invitation in 1667 through family connections, a co-ed experiment not be repeated for two centuries, Pepys peevishly remarked how he found her dress "so antic [crazy] and her deportment so unordinary, that I do not like her at all, nor did I hear her say anything worth hearing."
The Society's only purpose, in Evelyn's words, was "the investigation of Truths & discovery of Errors & Impostures… without any Offence to anybody". As early as 1676 he could cite in a letter to his wife "many useful inventions" arising out the Society's collective efforts, "such as watches, cranes, pumps, and mathematical instruments." There's something characteristically English about such an endeavor, whereby strangers gather under the aegis of some shared interest to read, study, and form friendships and in which they are implicitly agreed to exist insulated and apart from political differences. The impulse recalls Edmund Burke's "little platoons" of civil society and Michael Oakeshott's "civil associations" – institutions created by and for free people to pursue and cultivate their creative impulses.
Equally English and very nicely chronicled by Willes were the satirical jabs at the Society provided most pointedly by the playwright Thomas Shadwell (1642 – 1692) who irked Evelyn by seeming to target him directly. Where Pepys and Evelyn were free enough to cultivate and pursue their own occasionally esoteric scientific interests, so Shadwell was free to write mockingly of a fictional Sir Nicholas Gimcrack, a ridiculous philosopher who, at a Royal Society demonstration, "learns to swim like a frog on a table with the help of a Swimming Master." Without passing too much judgment on her subject, Willes herself writes with humor on the indulgent acquisitions Pepys collected in the 1660s. It included not only such newly introduced goods as coffee, tea, and chocolate, but also a pet monkey (which he mentioned "quite by chance"), cages filled with canaries, and (with the "zoological acme" reached) a pet lion from Algiers, "good company" he described it, which he somehow kept in his lodgings in Westminster.
By no means does this brief detour into one key chapter of The Curious World of Samuel Pepys and John Evelyn exhaust its content and charm. Willes has not written, nor intended to write, a trenchant academic work – rather this is deftly written popular history that captures a context and a moment of discovery and excitement in Restoration England. Like the chapter on science, the chapters on music, theatre, gardening, books, and fashionable exotica from the New World and the Far East are breezily but proficiently drawn by Willes as curious but never inexplicably so given the resources, industriousness, and natural curiosity available to individuals like Pepys and Evelyn.https://www.popmatters.com/curious-world-samuel-pepys-john-evelyn-2514935384.html

とても興味深く読みました:

再生核研究所声明 382 (2017.9.11)  ニュートンを越える天才たちに-育成する立場の人に

次のような文書を残した: いま思いついたこと:ニュートンは偉く、ガウス、オイラーなども 遥かに及ばないと 何かに書いてあると言うのです。それで、考え、思いついた。 ガウス、オイラーの業績は とても想像も出来なく、如何に基本的で、深く、いろいろな結果がどうして得られたのか、思いもよらない。まさに天才である。数学界にはそのような天才が、結構多いと言える。しかるに、ニュートンの業績は 万有引力の法則、運動の法則、微積分学さえ、理解は常人でも出来き、多くの数学上の結果もそうである。しかるにその偉大さは 比べることも出来ない程であると表現されると言う。それは、どうしてであろうか。確かに世界への甚大な影響として 納得できる面がある。- 初めて スタンフォード大学を訪れた時、確かにニュートンの肖像画が 別格高く掲げられていたことが、鮮明に想い出されてくる。- 今でもそうであろうか?(2017.9.8.10:42)。

万物の運動を支配する法則、力、エネルギーの原理、長さ、面積、体積を捉え、傾き、勾配等の概念を捉えたのであるから、森羅万象のある基礎部分をとらえたものとして、世界史における影響が甚大であると考えれば その業績の大きさに驚かされる。

世界史における甚大な影響として、科学上ではないが、それらを越える、宗教家の大きな存在に まず、注意を喚起して置きたい。数学者、天文学者では ゼロを数として明確に導入し、負の数も考え、算術の法則(四則演算)を確立し、ゼロ除算0/0=0を宣言したBrahmagupta (598 -668 ?) の 偉大な影響 にも特に注意したい。

そのように偉大なるニュートンを発想すれば、それを越える偉大なる歴史上の存在の可能性を考えたくなるのは人情であろう。そこで、天才たちやそれを育成したいと考える人たちに 如何に考えるべきかを述べて置きたい。

万人にとって近い存在で、甚大な貢献をするであろう、科学的な分野への志向である。鍵は 生命情報ではないだろうか。偉大なる発見、貢献であるから具体的に言及できるはずがない。しかしながら、科学が未だ十分に達しておらず、しかも万人に甚大な影響を与える科学の未知の分野として、生命と情報分野における飛躍的な発見は ニュートンを越える発見に繋がるのではないだろうか。
生物とは何者か、どのように作られ、どのように活動しているか、本能と環境への対応の原理を支配する科学的な体系、説明である。生命の誕生と終末の後、人間精神の在り様と物理的な世界の関係、殆ど未知の雄大な分野である。
情報とは何か、情報と人間の関係、影響、発展する人工知能の方向性とそれらを統一する原理と理論。情報と物の関係。情報が物を動かしている実例が存在する。
それらの分野における画期的な成果は ニュートンを越える世界史上の発見として出現するのではないだろうか。
これらの難解な課題においてニュ-トンの場合の様に常人でも理解できるような簡明な法則が発見されるのではないだろうか。 
人類未だ猿や動物にも劣る存在であるとして、世界史を恥ずかしい歴史として、未来人は考え、評価するだろう。世の天才たちの志向について、またそのような偉大なる人材を育成する立場の方々の注意を喚起させたい。偉大なる楽しい夢である。
それにはまずは、世界史を視野に、人間とは何者かと問い、神の意思を捉えようとする真智への愛を大事に育てて行こうではないか。

以 上

再生核研究所声明 387 (2017.10.13):  ゼロ除算についての全体的な印象


ゼロ除算についての全体的な印象を述べて置こう。 まず、ゼロで割る問題 ゼロ除算1/0=0/0=0は、気づいてみれば 実は当たり前だった。これは初期から述べてきたように、有名なMoore-Penrose 一般逆であり、チコノフ正則化法による最も基本的な方程式ax=bの一般化された意味での解であり、ゼロ除算を含む体の構造(山田体)が確立され、高橋の一意性定理で我々の考え以外にゼロ除算は有り得ず、道脇方式の除算の考えにも合っているばかりか、美観や自然観からも自明、当たり前である。ゼロ除算は数学的に確定している。
さらに、この新しい数学が我々の一般的な数学であることを見るために、ユークリッド幾何学、線形代数、微積分学、解析幾何学、微分方程式、複素解析、確率統計学など数学の初歩から600件を超える知見を探して、現代数学には間違いを含む、初歩的な欠陥があり、我々の空間の認識は ユークリッド以来間違っていると述べ、著書素案原稿114ページを広く配布、助言と意見を求めている。日本数学会や国際会議でも発表、論文なども十分に公刊していると言える。 - ただ研究発表は 研究が初期的段階にあることもあって、権威ある形になっていないのは問題であるが、真実を求めようとすれば、内容は学部低学年レベルであるから、ゼロ除算の真相は 多くの人びとに容易に理解できると考えられる。しかし、現実には既に発見後3年を経過して4年目を迎えようとしている状況を考えると、理解が進まないのは誠に奇妙な状況と言える。その後も、どんどん変な書き物や解説が出ている状況がある。
ユークリッド以来、アリストテレス以来の事件であることを考えれば、無理もない状況とも言える。さらに神秘的なゼロ除算の重い歴史が回想される。今でも混乱が続いていて おかしな議論が止まない。
ゼロ除算については 数学界は世界史上でも汚点を残してきたと考えられるが、 真実が現れたのに その真偽を明らかにすることにも 時間を掛けすぎているように見える。数学は人間を超えて存在し、その論理的な展開には必然性があり、ゼロ除算の将来は 約束された豊かな新世界を拓いており、これは既に歴然で すっかり当たり前である。何事でも基礎、基本が優先され、尊重されるべきことは当然である。 - 人の生きる意義は 真智への愛、神の意志を求めることにあることを 想起して置きたい。
アリストテレス以来、空や無、非存在に対する恐怖心の感性が 人間の心の奥に潜んでいるようである。ゼロに対する畏敬の念は 誤解して、無神にも通じているようで ゼロ除算は嫌われる面を持っているようであるが ゼロの世界は 全ての母なる豊かな全体に通じていると明るく捉えている。 ( - 世の過程 は ゼロから始まってゼロに帰している。) 数学的には ゼロ除算は 美しく統一的に初等数学を完全化させてくれると言える。未知の広い新世界が広がっている。現代数学には初歩的な欠陥があると言える。
数学に初歩的な欠陥があるのに 何故、支障が起きなかったのかと言う素朴な疑問が湧いてくるかも知れない。計算機がゼロ除算に会って実害が出ていることを除いて、それは、不可能であると言って避けていた世界が見えていなかったことを意味し、実は我々の知らない広い世界が存在していて それは世界をより完全に見えるようになることを意味する。未知の大きな世界が存在していたということである。
ゼロ除算は \tan(\pi/2) =0 など、高校レベルの数学における基本的な性質を沢山導き、ユークリッド以来の空間の認識を変える基本的な数学で、しかも理論も高校生レベルで理解できるものであり、目も眩むほどに雄大に、深く進化している高級な現代数学に比べると極めて異例の数学だと言える。その影響の大きさを考えると、想像もできないほどに大きいと言える。天動説から地動説への変化を思わせる世界史上の事件である。
以 上

再生核研究所声明 395(2017.11.5):  ゼロ除算物語 - 記録、回想

ゼロで割る問題は、ゼロ除算は 2014.2.2 友人二人に100/0=0を認識したとメールしてから、面白いいろいろな経過があって発展している。 再生核研究所声明や解説などで経過を述べてきたが、印象深い事実をできるだけ事実として記録して置きたい。文献は整理して保管するように整理して置きたい。事実を記録するため、以下詳しい記録は特別な仲間以外は この世を去って3年間は未公開としたい。絶えずできるだけ更新、記録を随時追加していきたい。
2017.11.05.05:40 晴天

再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
天才ガウスは生存中に既に数学界の権威者として高い評価と名声を得ていた。ところが、2000年の伝統を有するユークリッド幾何学とは違った世界、非ユークリッド幾何学を発見して密かに研究を進めていた。この事実を繰り返し気にしてきたが、ガウスは結果を公表すると 世情か混乱するのを畏れて公表をためらい、密かに研究を続けていた。ガウスの予想のように、独立に非ユークリッド幾何学を発見、研究を行って公表した、数学者ロバチェスキー と若きヤーノス・ボヤイは 当時の学界から強い批判を受けてしまった。
ガウスの心境は、十分にやることがあって、名声も十分得ている、ここで騒ぎを起こすより、研究を進めた方が楽しく、また将来に遺産を沢山生産できると考えたのではないだろうか。現在の状況より、歴史上に存在する自分の姿の方に 重きが移っていたのではないだろうか。
このような心理、心境は研究者や芸術家に普遍的に存在する未来に生きる姿とも言える。いろいろな ちやほや活動、形式的な活動よりは 真智への愛に殉じて、余計なことに心を乱され、時間を失うのを嫌い ひたすらに研究活動に励み、仕事の大成に心がける、未来に生きる姿といえる。
しかしながら、この未来に生きるは 実は当たり前で、生物の本能であることが分る。世に自分よりは子供が大事は 切ない生物の本能である。短い自己の時間より、より永い未来を有する子供に夢を託して、夢と希望を抱いて生きるは 生物の本能の基本である。生物は未来、未来と向かっているとも言える。
そこで、ゼロ除算が拓いた新しい世界観に触れて置きたい。未来、未来と志向した先には何が有るだろうか。永遠の先が 実は存在していた。それは、実は始めに飛んでいた。
そこから物語を始めれば、実はまた 現在に戻り、未来も過去も同じような存在であると言える。- これは、現在は未来のために在るのではなく、未来も現在も同じようなものであることを示している。
現在は 過去と未来の固有な、調和ある存在こそが大事である。将来のためではなく、現在は現在で大事であり、現在を良く生きることこそ 大事である。ガウスについていえば、ちょうどよく上手く生きたと評価されるだろう。- ただ人生を掛けて非ユークリッド幾何学にかけた若き数学者の研究を励まさず、若き数学者を失望させたことは 誠に残念な偉大なる数学者の汚点であることを指摘しなければならない。
以 上

再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い


人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上

再生核研究所声明 401(2017.11.18):  数学の全体、姿、生命力


ここ一連の声明で数学について述べてきた:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
No.81, May 2012(pdf 432kb) - International Society for Mathematical ...
www.jams.or.jp/kaiho/kaiho-81.pdf
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れ、違った観点から、数学の本質論と社会への影響について述べた。さらに
数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、逆に、未来人が高い評価を与える場合もある。
この文脈で数学の全体と生命力について言及して置きたい。数学とは、時間にもエネルギーにもよらない関係の全体であるから、数学的な論理思考を備えた高度な人工知能が自動的に数学を発展させていく可能性を否定できない。初歩的な数学では、実際、そのような試みがなされているという。人間を離れた、数学の全体像はどのようになるだろうか。基本的な仮説の上に何でも考えて、- これはいろいろな場合に当たって 何でも試行していく方法がとられるだろう。- しかしながら、人工知能が新しい概念や、定義を与えられるかは本質的な問題ではないだろうか。このような思いで数学の全体像を想像すると、基本的な仮定からどんどんいろいろな関係を導き、それは大樹のような姿に成るのではないだろうか。数学の客観的な存在はそのようであると考えられる。
ところが現在数学は人が展開して、発展させている状況から、数学の発展は 人間によるという現実がある。数学の客観的な在りように人間が関与してくる。そこで、関与する人間の興味と関心でどんどん進む状況と他からの要請でどんどん進む方向が存在する。後者は位置づけが明瞭であるが、前者の純粋数学の発展の様は大いに注目される。共通的な興味、関心で研究者の多い分野が存在し、いわゆる権威ある者の影響で門下生が多く、深く研究が進む状況は良くみられる。有名な難問に挑戦する相当な研究者集団も顕著である。数学にもブームや流行が有って、ある時期、相当に流行って研究会などで大きな話題になった話題が20年や30年くらい経つと関与する研究者が殆どいなくなってしまう状況がみられる。
それで、数学が大きな生命力をもって発展する華やかな時代と、細分化が進み、他との関係、他に影響や関心を与えない程になって、衰退していく、いわば大木では幹の部分から小さな枝や葉の部分になって数学は終末を迎えるのではないだろうか。数学は時間やエネルギーにもよらない不変なものであるが 数学の担い手である、人間に関与していて、人間が命ある生命であるように 数学も人間の影響を受けていると考えられる。
その意味で純粋数学者は、現在の 数学の位置づけ と 自分の心 をしっかりと捉えることが大事ではないだろうか。
以 上

0 件のコメント:

コメントを投稿