2017年12月26日火曜日

Newton, el genio que nació el día de navidad


Newton, el genio que nació el día de navidad

El físico y matemático inglés Isaac Newton nació un 25 de diciembre y sus ideas revolucionarían la ciencia. ¿Por que? Breve recuento de su vida.
El día de navidad de 1642 en un poblado de Inglaterra, nadie pensó que el recién nacido de apenas un kilo y medio que acababa de parir Hanna Ayscough, lograría sobrevivir. Sin embargo, ochenta y cuatro años más tarde era enterrado en la Abadía de Westminster al lado de Shakespeare, después de haber sido la figura más resplandeciente de la revolución científica del siglo XVII.
Nacido el mismo año en el que murió Galileo, contemporáneo de Vivaldi y de Velázquez, de Halley y de Huygens, Isaac Newton tuvo una infancia difícil. Su padre había muerto cuando él nació. Su madre se casó en segundas nupcias y Newton creció con un resentimiento hacia ella y un profundo odio hacia su padrastro.
Estudió en Cambridge. Aprendió química con Boyle, estudió matemáticas clásicas y el pensamiento filosófico de Aristóteles y Descartes. Se adentró en el pensamiento mágico de la alquimia.
Refugiado en su pueblo natal durante 1665 y 1666 huyendo de la epidemia de peste bubónica que asoló a las ciudades europeas, y libre de la presión de los horarios universitarios, vislumbró en un alarde creativo sus más fecundas ideas.
Concibió su ley de gravitación universal: la fuerza con que dos masas se atraen disminuye con el cuadrado de la distancia que las separa. También desarrolla el cálculo diferencial e integral, que son las matemáticas necesarias para calcular la trayectoria de un cuerpo, sometido a la fuerza de gravedad. Descubre que la luz blanca es la combinación de las luces de los colores del arco iris. Descubre el teorema del binomio y cómo aproximar funciones por series de potencias.
En los años siguientes Newton desarrollaría las consecuencias de estas ideas fundamentales. Es electo miembro del Trinity College ocupando a los 26 años, la cátedra Lucasiana que posteriormente ocuparían Paul Dirac y luego Stephen Hawking.
Hábil experimentador y matemático singular, poseedor de una intuición física singular, y obsesivo al extremo, no hubo faceta que rozara la ciencia que le fuera desconocida.
Su principal obra, los Principia, es tal vez el libro de mayor impacto científico en la historia.
El sistema newtoniano, plasmado en los Principia, con su concepción del tiempo, del espacio, y las ecuaciones que rigen las trayectorias de cuerpos sometidos a la gravitación, le brindó a la humanidad una nueva manera de entender la realidad física. La ley de gravitación universal de Newton explicó por qué los astros son esféricos, por qué ocurren las mareas. Entendimos que el movimiento de un proyectil en la Tierra obedece a las mismas leyes que el movimiento de los planetas alrededor del sol o que cualquier otro astro en torno a otro, unificando la gravedad terrestre con la celeste. Descifró la maquinaria precisa del sistema solar, desde las órbitas elípticas de los planetas, los eclipses o la llegada de cometas.
La física de newton fue el paradigma sobre el que se construyó la física en los siglos por venir, hasta el advenimiento de la relatividad y la física cuántica en el siglo XX
Lo demás es anecdótico. Profeta en su tierra, gozó de una enorme popularidad como ningún científico hasta entonces y sólo superado por Einstein dos siglos después. De carácter agrio, polémico, fue presidente de la Casa de la Moneda, de la Royal Society de Londres y miembro del parlamento inglés. Nunca se le conoció pareja.
El lunes 24 de marzo de 1727 murió de una afección renal.

とても興味深く読みました:

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 380:   What is the zero?\\
(2017.8.21)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle

\section{What is the zero?}

The zero $0$ as the complex number or real number is given clearly by the axions by the complex number field and real number field.

For this fundamental idea, we should consider the {\bf Yamada field}  containing the division by zero. The Yamada field and the division by zero calculus will arrange our mathematics, beautifully and completely; this will be our natural and complete mathematics.
\medskip

\section{ Double natures of the zero $z=0$}

The zero point $z=0$ represents the double natures; one is the origin at the starting point and another one is a representation of the point at infinity. One typical and simple example is given by $e^0 = 1,0$, two values. {\bf God loves  two}.

\section{Standard value}
\medskip

The zero is a center and stand point (or bases, a standard value) of the coordinates - here we will consider our situation on the complex or real 2 dimensional spaces. By stereographic
 projection mapping or the Yamada field, the point at infinity $1/0$ is represented by zero. The origin of the coordinates and the point at infinity correspond each other.

As the standard value, for the point $\omega_n = \exp \left(\frac{\pi}{n}i\right)$  on the unit circle $|z|=1$ on the complex $z$-plane is,  for $n = 0$:
\begin{equation}
\omega_0 = \exp \left(\frac{\pi}{0}i\right)=1, \quad  \frac{\pi}{0} =0.
\end{equation}
For the mean value
$$
M_n  = \frac{x_1  +  x_2  +... + x_n}{n},
$$
we have
$$
M_0 = 0 = \frac{0}{0}.
$$
\medskip

\section{ Fruitful world}
\medskip

For example, for very and very general partial differential equations, if the coefficients or terms are zero, then we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we consider the converse, we see that the zero world is a  fruitful one and it means some vanishing world. Recall Yamane phenomena (\cite{kmsy}), the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show {\bf some changes} as in the Yamane phenomena.

\section{From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure (\cite{osm}), a story starts from the zero and ends with the zero. This will mean that $0$ means all and all are $0$. The zero is a {\bf mother} or an {\bf origin} of all.
\medskip

\section{ Impossibility}
\medskip
As the solution of the simplest equation
\begin{equation}
ax =b
\end{equation}
we have $x=0$ for $a=0, b\ne 0$ as the standard value, or the Moore-Penrose generalized inverse. This will mean in a sense, the solution does not exist; to solve the equation (6.1) is impossible.
We saw for different parallel lines or different parallel planes, their common points are the origin. Certainly they have the common points of the point at infinity and the point at infinity is represented by zero. However, we can understand also that they have no solutions, no common points, because the point at infinity is an ideal point.

Of course. we can consider the equation (6.1)  even the case $a=b=0$ and then we have the solution $x=0$ as we stated.

We will consider the simple differential equation
\begin{equation}
m\frac{d^2x}{dt^2} =0,  m\frac{d^2y}{dt^2} =-mg
\end{equation}
with the initial conditions, at $t =0$
\begin{equation}
 \frac{dx}{dt} = v_0 \cos \alpha , \frac{d^2x}{dt^2} = \frac{d^2y}{dt^2}=0.
\end{equation}
Then,  the highest high $h$, arriving time $t$, the distance $d$ from the starting point at the origin to the point $y(2t) =0$ are given by
\begin{equation}
h = \frac{v_0 \sin^2 \alpha}{2g},  d= \frac{v_0\sin \alpha}{g}
\end{equation}
and
\begin{equation}
t= \frac{v_0 \sin \alpha}{g}.
\end{equation}
For the case $g=0$, we have $h=d =t=0$. We considered the case that they are the infinity; however, our mathematics means zero, which shows impossibility.

These phenomena were looked many cases on the universe; it seems that {\bf God does not like the infinity}.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5):   Discovery of the division by zero as
$0/0=1/0=z/0=0$.


\end{thebibliography}

\end{document}

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
https://sites.google.com/site/sandrapinelas/icddea-2017

2017.8.21.06:37

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

                                    


1/0=0、0/0=0、z/0=0


ソクラテス・プラトン・アリストテレス その他

0 件のコメント:

コメントを投稿