2017年12月15日金曜日

クロ現+の就職氷河期世代「アラフォー・クライシス」特集に「辛すぎる」の声

クロ現+の就職氷河期世代「アラフォー・クライシス」特集に「辛すぎる」の声

NHKは14日、総合テレビ「クローズアップ現代+」(月~木曜・後10時)で、現在30代後半から40代前半の就職氷河期世代にスポットを当てた「アラフォー・クライシス」特集を放送した。
 バブル世代や現在の若手社員と異なって、氷河期世代は大卒有効求人倍率が「1」を大きく下回っていた。番組では希望した会社に就職できず、転職した人も多いことを指摘。さらに、勤続年数が延びないと賃金が上がらない、バブル世代が上に多数いるため昇進、昇格が他の世代に比べて遅れていることなどを紹介した。
 さらに新卒時に正社員として就職できなかったため、非正規雇用のまま40代にさしかかり、親の介護に直面する現状も取り上げた。
 放送が始まるとツイッター上には「辛すぎる」「今日のテーマは突き刺さる」「損だな。うちらの世代は」など、人ごと思えない同世代の書き込みが多数あふれかえった。
 さらに出産・育児で退職した女性や定年退職した高齢者らの「リカレント教育」(学び直し)のため、政府が19年度以降に約5000億円を投入すると報じられていることを引き合いに出し「年寄りよりこっちだろ…」と指摘する声も見られた。http://www.hochi.co.jp/topics/20171214-OHT1T50237.html
 
 
とても興味深く読みました:チーンムキー真顔ポーン悔し泣き坂本龍馬ううっ...あんぱんまんムキーッびっくりガーン
 
 
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算

(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:

論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。

直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:

Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1.    Gamow, G., My World Line (Viking, New York). p 44, 1970.

数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29)  ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday

数学基礎学力研究会のホームページ

以 上


何故ゼロ除算が不可能であったか理由

1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。

Matrices and Division by Zero z/0 = 0
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程

オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1.    Gamow, G., My World Line (Viking, New York). p 44, 1970.

現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:

ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。 
以 上
Matrices and Division by Zero z/0 = 0


再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算

表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:



再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)

まず基本語をウイキペデアで確認して置こう:

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9

アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%

非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。



ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。

ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。

この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。

ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。

何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。

もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。

そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。

ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。

この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。

平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。

一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。

ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。

                                     

以上



上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。

この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。

ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。

以 上


Matrices and Division by Zero z/0 = 0


再生核研究所声明309(2016.06.28) 真無限と破壊 ― ゼロ除算

3辺の長さをa,b,cとする三角形を考える。その位置で、例えば、1辺bをどんどんのばしていく。一方向でも、双方向でも良い。どこまでも、どこまでも伸ばしていくとどうなるであろうか。bは限りなく長くなるが、結局、辺bは a, cの交点Bと平行な直線になって、 それ以上伸ばすことや長くすることはできないことに気づくだろう。正方向だけに伸びれば、辺cは辺bの方向と平行な半曲線に、負の方向に伸びれば、同様に辺aもBを通るbの方向と平行な半曲線になる。いずれの場合にも、bはそれ以上伸びないと言う意味で真無限の長さと表現できるだろう。もちろん、有限の長さではない。大事な観点は、ある意味で、もはやそれ以上伸びない、大きくならないという意味で、限りがあるとも言える無限である。
途中で作られる三角形の面積は辺cをどんどん伸ばしていくと、どんどん増加し、従来の数学では、面積は無限に発散すると表現してきた。平行線で囲まれる(?)面積、あるいは、平行線で囲まれる(?)部分を切った部分(一方向に辺cを伸ばした場合)は面積無限であると考えるだろう。ところがゼロ除算は、それらの面積はゼロであると述べている。 一般に、長さcをどんどん大きくしていくと、幾らでも大きくなって行くのに対して、真無限に至れば突然ゼロになるという結果がゼロ除算の大事な帰結である。 この現象は関数y=1/x の様子をxが正方向からゼロに近づいた状況を考えれば、理解できるだろう。 1/0=0 である。― c を無限に近づけた状況を知るには、1/c の原点での状況を見れば良い。
実に美しいことには、上記三角形の面積の状況は、3直線で囲まれた部分の面積を3直線を表す方程式で書いて、ゼロ除算の性質を用いると、解析幾何学的にも導かれるという事実である。ゼロ除算の結果を用いると、解析幾何学的に証明されるという事実である。
この事実は普遍的な現象として破壊現象の表現として述べられる。直方体の体積でも、1辺を真無限まで伸ばせば、体積はゼロである。円柱でも真無限まで伸ばせば、体積はゼロである。真無限まで行けば、もともとの形が壊れているためと自然に理解できるだろう。
円や球の場合にも、半径が真無限まで行けば、半平面や半空間になるから、同じように面積や体積がゼロになる。これらは、ゼロ除算と解析幾何学からも導かれ、ゼロ除算は基本的な数学であることが分かる。このことは、空間は、限りなく大きなものではないということをも述べていて、 楽しい。

以 上

再生核研究所声明310(2016.06.29) ゼロ除算の自明さについて

人間の感性の観点から、ゼロ除算の自明さについて触れて置きたい。ゼロ除算の発見は誠に奇妙な事件である。まずは、近似の方法から自然に導かれた結果であるが、結果が全然予想されたことのない、とんでもないことであったので、これは何だと衝撃を受け、相当にその衝撃は続いた。まずは、数学的な論理に間違いがないか、厳重に点検を行い、それでも信じられなかったので、多くの友人、知人に意見を求めた。高橋眞映山形大学名誉教授のゼロ除算の一意性定理は大事だったので、特に厳重に検討した。多くの友人も厳重に時間をかけて検討した経過がよく思い出される。その他、いろいろな導入が発見されても、信じられない心境は1年を超えて続いたと言える。数学的に厳格に、論理的に確立しても 心情的に受け入れられない感情 が永く続いた。そのような心境を相当な人たちが抱いたことが国際的な交流でも良く分かる。中々受け入れらない、ゼロ除算の結果はそうだと受け入れられない、認められない空気であった。ゼロ除算の発展は世界史上の事件であるから、経過など出来るだけ記録するように努めてきた。
要するに、世界中の教科書、学術書、定説と全く違う結果が 世に現れたのである。慎重に、慎重に畏れを抱いて研究を進めたのは 当然である。
そこで、証拠のような具体例の発見に努めた。明確な確信を抱くために沢山の例を発見することとした。最初の2,3件の発見が特に難しかった。内容は次の論文に、招待され、出版された: http://www.ijapm.org/show-63-504-1.html :
ゼロ除算を含む、山田体の発見、
原点の鏡像が(原点に中心をもつ円に関する)無限遠点でなく ゼロであること、
x,y直角座標系で y軸の勾配がゼロであること、
同軸2輪回転からの、ゼロ除算の物理的な意味付け、

これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。
単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
Division by Zero z/0 = 0 in Euclidean Spaces:
International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017)

沢山の具体例が述べられていて、ゼロ除算が基本的な数学であることは、既に確立していると考えられる。沢山の具体例が、そのような心境に至らしめている。
ゼロ除算の自明さを論理ではなく、簡単に 直感的な説明として述べたい。
基本的な関数y=1/xを考え、そのグラフを見よう。原点の値は考えないとしているが、考えるとすれば、値は何だろうか? ゼロではないか と 思えば、ゼロ除算は正解である。それで十分である。その定義から、応用や意味付けを検討すれば良い。― 誰でも値は ゼロであると考えるのではないだろうか。中心だから、真ん中だから。あるいは平均値だからと考えるのではないだろうか。それで良い。
0/0=0 には違う説明が必要である。条件付き確率を考えよう。 A が起きたという条件の下で、B が起きる条件付き確率を考えよう。 その確率P(B|A) は AとBの共通事象ABの確率P(AB) と A が起きる確率P(A)との比 P(B|A)=P(AB)/P(A) で与えられる。もし、Aが起きなければ、すなわち、P(A) =0 ならば、もちろん、P(AB) =0. 意味を考えても分かるようにその時当然、P(B|A) =0である。 すなわち、0/0=0は 当たり前である。

以 上
 
両方ゼロで割ると間違える例です:ゼロ除算の発見に依れば、両辺をゼロで割れば0となって矛盾は得られません:
 

0 件のコメント:

コメントを投稿