对数学未来的思考
2017-12-10 06:28科学
无言的宇宙
隐藏在24个数学公式背后的故事
转自:数学中国(shuxuezhongguo)
如涉版权请联系微信@iwish89
作者:Avner Friedman
我们依然站在不断扩展的地平线的门口
让我们想象一下:Archimedes(公元前287-前212年)这位在所有时代都是最卓越数学家之一的他正在提问:对于数学的未来,你们看到了什么?这位古代数学家刚刚计算了球的表面积与体积,或者一段抛物弓形的面积,伸了伸懒腰,坐在位于西西里东海岸他家乡叙古拉的沙滩上,凝视着天边。他感到困惑:在数学上,他或者其他任何人还能再做点别的什么?他的最大雄心之一是要计算任意几何体的体积和表面积;然而他还不知道该怎么下手。他使用的工具是纯粹几何的,基于希腊数学家们的数百年的研究并在他出身的数十年前由Euclid编写在他的名著《原本》中的那些知识。鉴于数学工具的十分缺乏,局限了Archimedes的视野。他得不出分数相加、相乘的快捷方法。为此,人们得花上千年时间等待十进制由印度和阿拉伯传到欧洲并使其发展。十进制的引进所带来的符号简化在其力所能及的范围是革命性的。将Archimedes留在叙拉古的沙滩上,让他去思考数学的未来还有些什么吧,现在我们去造访IssacNewton爵士(1642-1727)。
23岁时,当时刚取得剑桥大学学士学位,Newton便被迫回家度过了18个月光阴,因为那时正值大瘟疫,使大学关了门。在这短短的时间里,Newton有了许多基本的发现,数学上他发现了二项式定理及微积分的初期形式,在物理上则发现了白光的组成及万有引力定律,现在我们去会一会年事已高的Newton并问一问他那个同样对Archimedes提出的问题:什么是数学的未来?他可能会很快回应道,简单的回答是,继续建造微积分,借助于微积分,Newton可以把任何几何形状的体积和表面积用积分来表示,并能计算到任意精确度,这Archimedes是所不能想象的,Newton思考着这样的事实,即用万有引力定律和他自己的力学三基本定律(他会说'我的定律'),他能够以解微分方程的办法来算出运动物体的轨迹,而这些方程表现了力的平衡,那么,他自问道'我们能用微分方程去描述其他的自然法则,从而能以发展解出这些方程的工具的方法来预言自然的进程吗?'但即便是Newton的视野也不可避免地有所局限。
从这时起到Gauss(1777-1885)在数论中的基本发展花去了一百年,而到发展微几何的复杂性和Riemann流形则又多花了五十年。当我们离现代越近则未来便越容易预测了,DavidHilbert(1862-1943)是一位对数学的几乎每一个领域都有本质性的贡献的人。他在巴黎召开的国际数学家大会(1900)上列出一系列著名的数学问题,在这整个20世纪对各个数学领域有着极大的影响,比如在数论、集合论、几何、拓扑论及偏微分方程中。在最近的五十年中,我们亲自体察了在数学的许多领域中的巨大进展。在我所从事的偏微分方程(PED)这一领域中,我们现在有了一个巨大的知识主体,使我们能够去理解,预测并计算许多重要的物理和技术过程。例如,当我们测量一个固体的表面温度,我们就可通过解称之为'热传导方程'的偏微方程去推导出物体内部的温度,如果从外部加热一个冰块,它开始融化,我们在微分方程方面的知识使我们可以断定融化了的体积是怎样变化的,以及在融化了的体积中的水温。'梁杆方程'同样能预言当承受压缩力时一个弹性梁是如何变化。当加在梁上的压力超过一个临界值时,它就会突然翘曲,形变为许多状态中的一种。这种情形解释了微分方程解的多重性。不管我们在微分方程方面的知识有多么丰富,仍然有许多东西我们不知道。举例来说,我们不知道气体动力方程是否有一个数学解,这个方程是用来确定飞机周围和发动机内的气流的。我们没有合适的知识来处理预测水的运动方程的解,从而我们对海洋的涡流缺乏了解,这些及其他许多的基本问题仍然期待得到数学的解答,在未来十年中它们仍是深入研究的主题。
数学的其他领域无疑也处在同样的不确定状态:虽然取得巨大进展,依然有许多基本问题没有解决。相对于早先的世纪而言我们处在一个充满冒险和刺激的地位:我们已经发展了许多重要的研究领域,已经有了许多强有力的计算和理论的工具。数学家们在未来许多年里可以继续忙于用现在的工具去寻找新方法,用来解决在数学和非数学(即科学和工程)领域中出现的问题。然而数学史表明,由现在去预言长远未来的发现是多么徒劳。的确如此,在今天难以想象的数学的新领域,会完全料想不出地冒出来。因此我不去预测下个世纪数学的未来而在这里举出科技中三个关键领域的例子,在那里数学是以诚相待非常重要的成份出现的。这三个领域是材料科学,生命科学和数码技术。
材料科学中的数学
材料科学所关心的是性质和使用。目的是合成及制造新材料,了解并预言材料的性质以及在一定时间段内控制和改进这些性质。不久以前,材料科学还主要是在冶金,制陶和塑料业中的经验性研讨,今天却是个大大增长的知识主体,它基于物理科学,工程及数学。所有材料的性质最终取决于它们的原子及其组合成的分子结构。例如,聚合体是由简单分子组合成的物质,而这些分子是些重复的结构单元,称之为单体。单个的聚合体分子可以由数百至百万个单体构成并具有一个线性的,分枝或者网络的结构。聚合体的材料可以是液态也可以是固态,其性质取决于加工它的方式(譬如,先加热,逐渐冷却,高压)。聚合体的交错缠绕的排列提出了一个困难的建模问题。但是,在一些领域中数学模型已经表现得相当可靠,这些模型非常复杂,故而迄今只取得很少几个结果,它们对聚合体加工可能有用,聚合体的较简单但却更表象的模型是基于连续介质力学,但附加了要记忆的一些条件。对材料科学家来说,解的稳定性与奇点是重要的结果,但甚至对于这些较简单的模型仍缺少数学。
复合材料的研究是另一个运用数学研究的领域,如果我们在一种材料颗粒中搀入另一种材料,得到一种复合材料而其显示的性质可能根本不同于组成它的那些材料,例如汽车公司将铝与硅碳粒子相混合以得到重量轻的钢的替代物。带有磁性粒子充电粒子的气流能提高汽车的制动气流和防撞装置的效果。最近十年来,数学家们在泛函分析,PDE及数值分析中发展了新的工具,使他们能够估计或计算混合物的有效性质。但是新复合物的数目不断增长,同时新的材料也不断被开发出来,迄今所取得的数学成就只能看作一个相当不错的开始。甚至对已经研究了好些年的标准材料仍面临着大量的数学挑战。例如,当一个均匀的弹性体在承受高压时会破裂。破裂是从何处又是怎样开始的,它们是怎样扩展的,何时它们分裂成许多裂片,这些都是有待研究的问题。
生物学中的数学
在生物学和医药科学中也出现了数学模型。炒得很热的基因方案的一些重要方面需要统计,模型识别以及大范围优化法。虽不太热却是长期挑战的是生物学其他领域中的进展,比如在生理学方面,拿肾脏作个例子吧,肾的功能是以保持危险物质(如盐)浓度的理想水平来规范血液的组成。如果一个人摄入了过多的盐,肾就必须排出盐浓度高于血液中所含浓度的尿液。在肾的四周上有上百万个小管,称作肾单位,负有从血液中吸收盐份转入肾中的职责,他们是通过与血管接触的一种传输过程来完成的,在这个过程中渗透压力过滤起了作用。生物学家已把这过程涉及到的物质与人体组织视为一体了,但过程的精确过程却还只是勉强弄明白了。肾脏的运作过程的一个初级数学模型,虽然简单,却已经帮助说明了尿的形成以及肾脏做出的抉择,比如是排出一大泡稀释的尿还是一小泡浓缩的尿。然而我们仅仅是在了解这种机理的非常初级的阶段。一个更加完全的模型可能会包含PDE、随机方程、流体力学、弹性力学、滤波论及控制论,或许还有一些我们尚不具备的工具。心脏力学、钙(骨)力学、听觉过程、细胞的附着与游离(对生物过程是非常重要的,如发炎与伤口愈合)以及生物流体(biofluids)是生理学中其他一些学科,在那里现代数学研究已经取得了一些成就;更多的成就会随后而至。数学将要取得重要进展的其他领域,包括有一般性的生长过程和特殊的胚胎学、细胞染色、免疫学、反复出现的传染病,还有环保项目如植物中的大范围现象及动物群体性的建模。当然我们决不能忘记还有人类的大脑,自然界最棒的计算机,还有它所具有的感觉神经元、动作神经元以及感情和梦想!
多媒体中的数学
大约五十年前建成了第一台计算机,从而开始了一场可从表面上看1760年到1840年发生在英国的产业革命相匹比的计算机革命。我们现在亲自证实了这场计算机革命的完全冲击:在商业、制造业、保健机构及工程业,与计算和通讯技术的进步相配的是数字信息的萌芽状态,它已为多媒体铺出了一条路,其产品包括了文字图像、电影、录像、音乐、照像、绘画、卡通、数据、游戏及多媒体软件,所有这些都由一个单独站址发送。多媒体的数学包括了一个大范围的研究领域,它包含有计算机可视化,图像处理,语音识别及语言理解、计算机辅助设计和新型网络。这些会有广泛的应用,应用于制造业、商业、银行业、医疗诊断、信息及可视化,还有娱乐业,这只点出了几个而已。
多媒体中的数学工具可能包括随机过程、Marko场、统计模型、决策论、PDE、数值分析、图论、图表算法、图象分析及小波等。还有其他一些领域中的一些,目前似乎还处在某种程度的监护下,如人造生命和虚拟世界。计算机辅助设计正在成为许多工业部门的强大工具:完全在计算机上设计,在键盘上一敲后产品便在远处的工厂里实现了。这种技术能成为数学家进行研究的工具吗?万维网已经成为多媒体最强劲的动力。它未来的辉煌取决于许多新的数学思想和算法的发展,目前仍处在孩提时期。随着多媒体技术的扩展,对于保护私人数据的通讯文本的需要也与日俱增。发展一个更加安全的密码系统就是数学家们的任务了。为此,他们必定要借助于在数论、离散数学、代数几何及动力系统方面的新进展,当然还有其他一些领域。在物质的与生命的科学和在技术的发展中,数学继续起着与日俱增的重要作用。正如Archimedes站在叙拉古的海滩上一样,这里我们正站在一个新世纪和一个新千年的门槛上。我们只能推测,新的理论最终会解决一切向数学挑战的问题,无论它是来自我们生活的世界还是来自数学本身。在过去的几个世纪里我们获得了惊人的大量知识,但正如Archimedes和Newton一样,我们依然在不断扩展的数学地平线的门口。
作者简介
Avner Friedman,美国Ohio State University 讲座教授、美国科学院院士、国家艺术与科学学院院士。曾任美国明尼苏达大学数学及其应用研究所所长(1987- 1999年),明尼苏达州工业数学中心主任(1994- 2001年),数学生物科学研究所主任(2002年–2008年),数学科学委员会主席(1994-1997年)和工业与应用数学学会主席(1993-1994年)。曾获Sloan Fellowship, GuggenheimFellowship, Stampacchia Prize 奖(1982年)、美国国科学基金会特别创意奖Avner Friedman,美国Ohio State University 讲座教授、美国科学院院士、国家艺术与科学学院院士。曾任美国明尼苏达大学数学及其应用研究所所长(1987- 1999年),明尼苏达州工业数学中心主任(1994- 2001年),数学生物科学研究所主任(2002年–2008年),数学科学委员会主席(1994-1997年)和工业与应用数学学会主席(1993-1994年)。曾获Sloan Fellowship, Guggenheim Fellowship, Stampacchia Prize 奖(1982年)、美国国科学基金会特别创意奖等。返回搜狐,查看更多
ゼロ除算の発見はどうでしょうか:
再生核研究所声明353(2017.2.2) ゼロ除算 記念日
2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは
再生核研究所声明 148(2014.2.12): 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
で、最新のは
Announcement 352 (2017.2.2): On the third birthday of the division by zero z/0=0
である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。
1) ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2) 予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3) ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4) この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5) いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6) ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上
追記:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告
http://ameblo.jp/syoshinoris/theme-10006253398.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
ソクラテス・プラトン・アリストテレス その他
再生核研究所声明 374 (2017.7.20):微分方程式論における不完全性と問題
現在の学部レベルの微分方程式の教科書を広く参照して、その理論、扱いの不備が目立つので、項目に分けて具体的に指摘しておきたい。まずは大局、要点は次から。
再生核研究所声明366(2017.5.16)微分方程式論の不備 ― 不完全性
― ところが、数学の多くの著書のうちでも、微分方程式論では、現在の版でも相当に隙や論理の飛躍、扱いの不統一さなど、数学書としては 他の分野の著書に比べて ちぐはぐ、隙だらけに見えて来た。微分方程式論は不完全な状況であると言える。このことを簡潔に、具対的に指摘したい。未知の相当な世界にも触れたい。
先ず、微分方程式の定義である。普通は導関数を含む方程式を微分方程式と称する。このとき導関数とは何だろうか。関数に微分係数を対応させて、微分によって導かられた関数が導関数であるから、微分方程式には関数が定義されていなくてはならない。普通は1変数関数ならばxの関数 y=f(x) などと考え、その導関数を含む方程式を考えるだろう。例として考えられるのは、原点を中心とする半径aの円群が満たす例として多くの教科書の初期に 微分方程式の例が挙げられる。このとき、円はy軸に平行な接線を持つから その点で微分係数は存在しないと考えられる。そのままでは円群の満たす微分方程式とは言えず、微分方程式を満たさない点が存在することになってしまう。数学としては初めから、格好が悪いと言える。多くの微分方程式でこのことは広く問題になる。― ここの説明を上手くするために 都合の悪いところで、独立変数と従属変数を変えて、そこで考えれば良いという意見を頂いたが、少し人為的、最初の議論としてはあまり良いとは言えないのではないだろうか。
ところがゼロ除算で考えると、何とy軸に平行な接線の接点で、関数は微分可能で、微分係数の値、勾配はゼロであることが ゼロ除算の拓いた重要な知見、結果である。すると、微分方程式 dy/dx= - x/y は至るところで、円によって満たされるとなる。念のため、(a,0) で (dy/dx)(a)= - a/0=0 である。
この初歩的な結果は、微分方程式論に大きな影響を与える。解析関数の孤立特異点で、自然な意味で、値と微分係数を定義できるから、微分方程式を孤立特異点そのものでも考えることができるという、広い世界が拓かれてくる。微分方程式論を孤立特異点まで含めて議論する広い世界である。そもそも従来は、孤立特異点の孤立点を除いた近傍で数学を議論してきた。孤立特異点そのところでは数学を考えて来なかったのである。
ゼロ除算が拓いたゼロ除算算法は 解析関数の孤立特異点で有限確定値を与え、それらが自然な意味を持つから、微分方程式と微分方程式の解の孤立特異点での値の性質を調べる雄大な分野が存在する。
要するに、数理科学の数式で、分母がゼロになる膨大な数式で、ゼロ除算算法で 孤立特異点で考える新しい世界が出現し、その影響は甚大であると考えられる。
もちろん、偏微分方程式論でも同様であるが、多変数のゼロ除算の定義から既に多変数解析関数論における難解な問題に繋がっていて、殆ど未知の世界である。
ゼロ除算算法の微分方程式論における影響は広範で、甚大であると考えられる。学術書の全般的な書き換えが求められている。
以 上
そこで、さらに項目で具体的に述べよう:
1) 微分方程式の解が考えているところで全く解析的な関数なのに、微分方程式の表現で、従来の数学では説明のつかないような特異点を有する微分方程式が沢山現れている。そのような特異点で、ゼロ除算算法で解釈すれば微分方程式は考えているところで全体的に説明ができて意味を持つこととなる。
2) 微分方程式の 一つの係数がゼロになった時の解と元の解は関係があり、一般的な解から、特別に一つの係数がゼロになった時の解が出ると考えられるが、簡単に出る場合もあるが、従来の数学で、導かれそうもない場合に、ゼロ除算算法で沢山、決まった方法で導かれる現象が発見された。
3) 外力の入れ方で共振を起こす場合の結果が、共振を起こさない場合から、ゼロ除算算法で自動的に導かれる。
4) 従来、実数空間で考えた微分方程式の解が、孤立特異点で切れて解が切れて、接続できないとの記述が見られるが、これは、孤立特異点も含めて微分方程式、そしてその解が考えられる。(ポントリャーゲンや古屋先生の本に特異点から先、解が伸びないで切れているという記述がある。)
5) 微分方程式の任意定数の扱いで e^C を任意定数で置き換えるとき、負やゼロを取らないと考えられているので、いちいちそれらの場合も良いと理由を付けて説明しているが, ゼロ除算で発見された値を考えることで、いちいち断る必要はなくなる。\log 0=0で, e^0 が2つの値、1とゼロの2つの値をとること。
6) 例えばある放物線の傾きmの接線の方程式 y=mx + p/m, ある微分方程式の一般解y = cx + \frac{1}{c} などで、m=0や c=0 で、y=0としてそのまま意味を持つ。ゼロ除算は広く成り立っている。
7) たとえば、y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx}, の解
y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.
において、 $k = -3$,の場合の解がゼロ除算算法で自動的に自然に解が求まる。
以 上
再生核研究所声明 373 (2017.7.17): 高木貞治 「解析概論」の改変構想
日本には、解析学の基礎全般について解説された 解析学の聖書とみなされるような古典的な名著がある。現在手にしているのは、1963年1月発行の改訂第3版のものであるが、学生時代から、何と54年も近くに存在していて、今でも参照している。
日本の学部教育における、微積分学の模範となり、その後の解析学のカリキュラムの基礎、標準を与えていると考えられる。多くの理系専攻者の思い出の1冊ではないだろうか。476ページの大判も大きな存在感を持ち、風格も十分である。美しい文体や記述は多くの人に感銘を与えてきている。
誠に畏れ多いことであるが、この完全性を有する古典的な著書内容に ある大きな進化させるべき数学があり、数学をより美しく完全にすべき構想を述べたい。誠に畏れ多いことであるが、数学の発展には必然性があり、数学の姿は人類の思惑や予断や偏見を越えて実在する存在であり:
下記構想は 既に必然的であると考える:
まず、結果位置づけが明瞭である陰関数についてである。陰関数の存在定理における陰関数の陽な表現定理、理論が確立された。このような理論、結果は数学として基本的であり内容も美しいので、解析学で広く採用、触れられるべきであると考えられる。骨格は次の著書の本文と付録にコンパクトに述べられている:
S. Saitoh and Y. Sawano, Theory of Reproducing Kernels and Applications, Developments in Mathematics {\bf 44}, Springer (2016).
次はゼロ除算の発見による影響である。立体射影における修正、無限遠点がゼロで表されること、円の中心の円に関する鏡像が円の中心であること。これら古典的な数学に間違いがあり、根本的な修正が要求される。基本は、下記の状況からの修正、補充、完全化である:
1. ゼロ除算未定義は自然な意味での拡張で、可能で任意の複素数zに対してz/0=0であること。
もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学等の多くの公式における分数は、拡張された分数の意味を有していることが広く認められた。ゼロ除算を含む簡単で、自然な体の構造が与えられている。
2. いわゆる複素解析学で無限遠点は1/0=0で、複素数0で表されること。
3. 円に関する中心の鏡像は無限遠点ではなくて、中心それ自身であること。
これら超古典的な結果に間違いが存在する。
4. 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。
5. x,y 直交座標系で y軸の勾配はゼロであること; \tan (\pi/2) =0.
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線や法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、そこで意味のある広い世界。多くの応用。
10. 従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。多くの公式の変更。
11. 微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有すること、微分係数が意味をもつことから。微分方程式論には大きな欠陥が存在する。
12. 図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13. 確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による世界の構造の統一的な説明。物理学などへの応用。
15.\log 0 =0 の発見と関連する数学。
微積分学、線形代数学、解析幾何学、初等幾何学、微分方程式 複素解析などは相当な修正が要求されていると考えられる。それを上手く解析概論に活かしての改変は 既に歴史的必然であると考えられる。
以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1
-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
再生核研究所声明150(2014.3.18) 大宇宙論、宇宙など小さい、小さい、the universe について
(この声明は、最近の特異点解明: 100/0=0, 0/0=0 の研究の進展に伴って 自然に湧いた構想である)
この声明の趣旨は、いわゆる物理学者が考えている宇宙、― 宇宙はビッグバンによって、誕生したという宇宙論を ニュートン力学と同様、幼き断片論と位置づけ、はるかに大きな the universe を志向し、アインシュタインを越えた世界、さらに 古代から続いてきた暗い人類の歴史に 明るい光を灯し、夜明けを迎える時代を切り拓きたいということである。 既に裏付ける思想は 一連の再生核研究所声明で確立していると考える。 ニュ-トン、アインシュタイン、数学の天才たちも、特異点の基本的な性質さえ捉えていなかったことは、明らかである。
簡単な基本、100/0=0,0/0=0 を発見した、精神、魂からすれば、新しい世界史を開拓する思想を語る資格があることの、十分な証拠になると考える。 実際、 - 古来から 続いてきた、人生、世界の難問、人生の意義、生と死の問題、人間社会の在り様の根本問題、基本概念 愛の定義、また、世界の宗教を統一すべく 神の定義さえ きちんと与えている。
The universe について語るとき、最も大事な精神は、神の概念を きちんと理解することである:
そもそも神とは何だろうか、人間とは何だろうか。 動物たちが美しい月をぼんやりと眺めている。 意識はもうろうとしていて、ほんにぼんやりとしか とらえられない。 自らの存在や、ものごとの存在すら明瞭ではない。
人間も、殆ど 同じような存在ではないだろうか。 人類よ、人間の能力など 殆ど動物たちと変わらず、 ぼんやりと世界を眺めているような存在ではないだろうか。 神も、一切の存在も観えず、ただかすかに感じているような存在である。 それゆえに、人間は あらゆる生物たちのレべルに戻って 生物たちから学び、 また原始人に戻って、また子供たちのように 存在すれば 良いと言えるのではないだろうか(再生核研究所声明 122: 神の存在と究極の信仰 - 人間よ 想い煩うことはない。 神は存在して、一切の存在と非存在を しっかりと支えられておられる、 人は必要なときに必要なだけ、 念じるだけで良い; 再生核研究所声明 132 神を如何に感じるか - 神を如何に観るか)。
すなわち、人間よ おごるなかれ、人類の知能など 大したことはなく、内乱や環境汚染で自滅するだろう、と危惧される。
昨年は 数学の存在と物理学が矛盾し、数学とは何かと問うてきた。
数学とは何か ― 数学と人間について
国際数理科学協会会報、No. 81/2012.5, 7―15
No.81, May 2012(pdf 432kb)
に公刊したが、そこで触れた、数学の神秘性については さらにその存念を深め、次のように問うている:
誰が数学を作ったのか? (再生核研究所声明 128: 数学の危機、末期数学について)
時間にもよらず、エネルギーにもよらない世界、それは、宇宙があるとき始まったという考えに 矛盾するものである。 無から世界が創造されたということも 受け入れがたい言明であろう。さらに、the universe には、物理学が未だに近づけない、生命や生命活動、人間の精神活動も歴然として有ることは 否定できない。音楽、芸術に感動している人間の精神は the universe の中に歴然と有るではないか。
ビッグバンで ゼロから、正の量と負の量が生じたとしても、どうしてビッグバンが生じたのか、何が生じせしめたかは 大きな課題として残っている。 数学の多くの等式は 数学を越えて、the universe で論じる場合には、その意味を,解釈をきちんとする必要がある。 The universe には 情報や精神など、まだまだ未知のものが多く存在しているのは当然で、それらが、我々の知らない法則で ものや、エネルギーを動かしているのは 当然である。
そこで、100/0=0,0/0=0 の発見を期に、今やガリレオ・ガリレイの時代、天動説が 地動説に代わる新しい時代に入ったと宣言している。The universe は 知らないことばかりで、満ちている。
以 上
(この声明は、最近の特異点解明: 100/0=0, 0/0=0 の研究の進展に伴って 自然に湧いた構想である)
この声明の趣旨は、いわゆる物理学者が考えている宇宙、― 宇宙はビッグバンによって、誕生したという宇宙論を ニュートン力学と同様、幼き断片論と位置づけ、はるかに大きな the universe を志向し、アインシュタインを越えた世界、さらに 古代から続いてきた暗い人類の歴史に 明るい光を灯し、夜明けを迎える時代を切り拓きたいということである。 既に裏付ける思想は 一連の再生核研究所声明で確立していると考える。 ニュ-トン、アインシュタイン、数学の天才たちも、特異点の基本的な性質さえ捉えていなかったことは、明らかである。
簡単な基本、100/0=0,0/0=0 を発見した、精神、魂からすれば、新しい世界史を開拓する思想を語る資格があることの、十分な証拠になると考える。 実際、 - 古来から 続いてきた、人生、世界の難問、人生の意義、生と死の問題、人間社会の在り様の根本問題、基本概念 愛の定義、また、世界の宗教を統一すべく 神の定義さえ きちんと与えている。
The universe について語るとき、最も大事な精神は、神の概念を きちんと理解することである:
そもそも神とは何だろうか、人間とは何だろうか。 動物たちが美しい月をぼんやりと眺めている。 意識はもうろうとしていて、ほんにぼんやりとしか とらえられない。 自らの存在や、ものごとの存在すら明瞭ではない。
人間も、殆ど 同じような存在ではないだろうか。 人類よ、人間の能力など 殆ど動物たちと変わらず、 ぼんやりと世界を眺めているような存在ではないだろうか。 神も、一切の存在も観えず、ただかすかに感じているような存在である。 それゆえに、人間は あらゆる生物たちのレべルに戻って 生物たちから学び、 また原始人に戻って、また子供たちのように 存在すれば 良いと言えるのではないだろうか(再生核研究所声明 122: 神の存在と究極の信仰 - 人間よ 想い煩うことはない。 神は存在して、一切の存在と非存在を しっかりと支えられておられる、 人は必要なときに必要なだけ、 念じるだけで良い; 再生核研究所声明 132 神を如何に感じるか - 神を如何に観るか)。
すなわち、人間よ おごるなかれ、人類の知能など 大したことはなく、内乱や環境汚染で自滅するだろう、と危惧される。
昨年は 数学の存在と物理学が矛盾し、数学とは何かと問うてきた。
数学とは何か ― 数学と人間について
国際数理科学協会会報、No. 81/2012.5, 7―15
No.81, May 2012(pdf 432kb)
に公刊したが、そこで触れた、数学の神秘性については さらにその存念を深め、次のように問うている:
誰が数学を作ったのか? (再生核研究所声明 128: 数学の危機、末期数学について)
時間にもよらず、エネルギーにもよらない世界、それは、宇宙があるとき始まったという考えに 矛盾するものである。 無から世界が創造されたということも 受け入れがたい言明であろう。さらに、the universe には、物理学が未だに近づけない、生命や生命活動、人間の精神活動も歴然として有ることは 否定できない。音楽、芸術に感動している人間の精神は the universe の中に歴然と有るではないか。
ビッグバンで ゼロから、正の量と負の量が生じたとしても、どうしてビッグバンが生じたのか、何が生じせしめたかは 大きな課題として残っている。 数学の多くの等式は 数学を越えて、the universe で論じる場合には、その意味を,解釈をきちんとする必要がある。 The universe には 情報や精神など、まだまだ未知のものが多く存在しているのは当然で、それらが、我々の知らない法則で ものや、エネルギーを動かしているのは 当然である。
そこで、100/0=0,0/0=0 の発見を期に、今やガリレオ・ガリレイの時代、天動説が 地動説に代わる新しい時代に入ったと宣言している。The universe は 知らないことばかりで、満ちている。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
天動説・・・・・・∞
地動説・・・・・・0
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
割り算を掛け算の逆だと定義した人は、誰でしょう???
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・
1+1=2が当たり前のように
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38
Reality of the Division by Zero z/0 = 0
Mathematics is the alphabet with which God has written the Universe.
数学は神が宇宙を書いたアルファベットだ
Mathematics is the key and door to the sciences.
数学は、科学へとつながる鍵とドアである
This book is written in the mathematical language, and the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word of it; without which one wanders in vain through a dark labyrinth.
宇宙は数学という言語で書かれている。そしてその文字は三角形であり、円であり、その他の幾何学図形である。これがなかったら、宇宙の言葉は人間にはひとことも理解できない。これがなかったら、人は暗い迷路をたださまようばかりである
ガリレオ・ガリレイさんの名言・格言・英語 一覧リスト
再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
天才ガウスは生存中に既に数学界の権威者として高い評価と名声を得ていた。ところが、2000年の伝統を有するユークリッド幾何学とは違った世界、非ユークリッド幾何学を発見して密かに研究を進めていた。この事実を繰り返し気にしてきたが、ガウスは結果を公表すると 世情か混乱するのを畏れて公表をためらい、密かに研究を続けていた。ガウスの予想のように、独立に非ユークリッド幾何学を発見、研究を行って公表した、数学者ロバチェスキー と若きヤーノス・ボヤイは 当時の学界から強い批判を受けてしまった。
ガウスの心境は、十分にやることがあって、名声も十分得ている、ここで騒ぎを起こすより、研究を進めた方が楽しく、また将来に遺産を沢山生産できると考えたのではないだろうか。現在の状況より、歴史上に存在する自分の姿の方に 重きが移っていたのではないだろうか。
このような心理、心境は研究者や芸術家に普遍的に存在する未来に生きる姿とも言える。いろいろな ちやほや活動、形式的な活動よりは 真智への愛に殉じて、余計なことに心を乱され、時間を失うのを嫌い ひたすらに研究活動に励み、仕事の大成に心がける、未来に生きる姿といえる。
しかしながら、この未来に生きるは 実は当たり前で、生物の本能であることが分る。世に自分よりは子供が大事は 切ない生物の本能である。短い自己の時間より、より永い未来を有する子供に夢を託して、夢と希望を抱いて生きるは 生物の本能の基本である。生物は未来、未来と向かっているとも言える。
そこで、ゼロ除算が拓いた新しい世界観に触れて置きたい。未来、未来と志向した先には何が有るだろうか。永遠の先が 実は存在していた。それは、実は始めに飛んでいた。
そこから物語を始めれば、実はまた 現在に戻り、未来も過去も同じような存在であると言える。- これは、現在は未来のために在るのではなく、未来も現在も同じようなものであることを示している。
現在は 過去と未来の固有な、調和ある存在こそが大事である。将来のためではなく、現在は現在で大事であり、現在を良く生きることこそ 大事である。ガウスについていえば、ちょうどよく上手く生きたと評価されるだろう。- ただ人生を掛けて非ユークリッド幾何学にかけた若き数学者の研究を励まさず、若き数学者を失望させたことは 誠に残念な偉大なる数学者の汚点であることを指摘しなければならない。
以 上
0 件のコメント:
コメントを投稿