2016年12月10日土曜日

Einstein’s Greatest Mistake: The Life of a Flawed Genius

Einstein’s Greatest Mistake: The Life of a Flawed Genius



A great thinker, Albert Einstein closed his mind to other schools of thought. Bill Condie reviews a book that paints a picture of the final years of one of the world's iconic scientists.

NON-FICTION
Einstein’s Greatest Mistake: The Life of a Flawed Genius 
By David Bodanis
Little, Brown (2016)
RRP $35.00
We all make mistakes, for sure, but fallibility is not the first thing that comes to mind when thinking about the most recognisable genius the world has ever produced. David Bodanis, that talented explainer of complex physics to lay readers, whose E=mc2: A Biography of the World’s Most Famous Equation is among the clearest explanations of the famous formula, has come up with a perfect sequel.
Described by the author as “the story of a fallible genius, but also the story of his mistakes”, the book tries to explain the anticlimactic later years of the great man’s life. Tourists may have still gawped as Einstein trudged home in Princeton, but during those final decades he was largely ignored by working scientists.
The explanation lies, Bodanis argues, in the same characteristics of imagination and self-confidence that led the young Einstein to change the way we thought about physics forever. As he says, “genius and hubris, triumph and failure, can be inextricable”. To understand where Einstein went wrong, it is necessary to examine his earliest years to understand how his mind engaged with the mysteries of the universe.
It began with Einstein’s discovery that mass and energy are different forms of the same stuff, expressed in the neat little formula E=mc2 – unheard of at the time, but so dramatically demonstrated as true in the skies over Hiroshima, where a tiny sliver of matter became a knockout blow of energy.
Later came the theory of general relativity that proved energy and mass distort spacetime. The discovery unified gravity into a single view of the universe, no longer a separate force but the result of existing laws. Laws, Einstein thought, that were very clear and very exact. No wonder he considered the theory “the greatest satisfaction of my life”.
Ironically though, it was this faith in the perfection of his theory – one could say a blind faith – that closed his mind to other emerging schools of thought, particularly those developing in theories of quantum mechanics. That the quantum world of subatomic particles was a place of inherent uncertainty and contradiction was anathema to Einstein’s belief in the underlying laws that guided his own theory. God, he said, “is not playing at dice”. And that, to Bodanis, was his greatest mistake. It was also a blindness that kept Einstein in the wilderness for the last 25 years of his life.
With the centenary of Einstein’s general theory of relativity last year, there is no shortage of books about Einstein. But this one is still a welcome addition to the vast library. It comes, as mentioned, with Bodanis’ talent for explaining the maths and science of Einstein’s work. But the best part is the real feel it gives of Einstein the man, and his thinking.
The poor, somewhat arrogant, student of his youth – whose teachers thought would amount to little thanks to his reluctance to take instruction – against the odds gives birth to the in-his-prime scientist combining wonderful imagination and rigour to shake our understanding of the world to its foundations. But that, in turn, leads to a dogmatism that locks him out of a world of new thought that, had he approached the problem differently, he might have contributed so much to.
It’s a wonderful exposition of the life of Einstein – the man with the superhuman mind who was, in the end, all too human. 
This article appeared in Cosmos 72 - Dec-Jan 2017 under the headline "Einstein’s Greatest Mistake: The Life of a Flawed Genius"https://cosmosmagazine.com/physics/einstein-s-greatest-mistake-the-life-of-a-flawed-genius

ゼロ除算はどうでしょうか:

再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、ゼロ除算の教育、研究は日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の協力、参加をお願いしたい。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。数学はより美しく、完全であった。さらに、数学の奥深い世界を示している。ゼロ除算を含む体の構造、山田体が確立している。その考えは、殆ど当たり前の従来の演算の修正であるが、分数における考え方に新規で重要、面白い、概念がある。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童・生徒たちにも歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。応用する。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直交座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。三角関数や初等関数でも考え方を修正、補充する。直線とは、そもそも、従来の直線に原点を加えたもので、平行線の公理は実は成り立たず、我々の世界は、ユークリッド空間でも、いわゆる非ユークリッド幾何学でもない、新しい空間である。原点は、あらゆる直線の中心になっている。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の発展の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し ― ゼロ除算算法、広範な応用を展開する。最も顕著な例は、tan 90度 の値がゼロであることで、いろいろ幾何学的な説明は、我々の空間の認識を変えるのに教育的で楽しい題材である。特に微分係数が正や負の無限大に収束(発散)する時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。新しい、関数の素性が見えてくる。
複素解析学において 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点自身では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学的な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円に関する鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考え方の修正は、ユークリッド以来、我々の空間に対する認識の世界史上における大きな変更であり、数学を越えた世界観の変更を意味している。これはアリストテレスの世界の連続性の概念を変えるもので強力な不連続性を示している。 ― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える。
以 上
追記:
*156  Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and
 Applications -Plenary Lectures: Isaac 2015, Macau, China.
 (Springer Proceedings in Mathematics and Statistics, Vol. 177)  Sep. 2016 305 pp.            (Springer)
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017),
数学基礎学力研究会のホームページ
URL

再生核研究所声明331(2016.11.04) 
提案 ― ゼロ除算の研究は、学部卒論や修士論文の題材に適切

(雨上がり 山間部の散歩で考えが湧いた。ゼロ除算の下記論文は、新しい数学の研究課題で、学部4年生の卒論ゼミの課題、修士論文の研究課題に適切である:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China. (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016        305 pp. (Springer) 
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017),
数学基礎学力研究会のホームページ
URL
簡単に理由を纏めて置きたい。
1) 基礎知識が学部3年生程度で十分で、基本的な結果を議論でき、新しい結果を導ける余地が十分に存在する。新規で、多くの人が興味を持つ課題で国際的にも広く交流できる。
2) 内容は、永い歴史を有する世界史の問題に関わり、空間の考え、勾配、微分、接線、連続性、無限など数学の基礎概念に関与している。相対性理論、ブラックホール、ビッグバン、計算機障害などにも関係している。
3) もともと歴史的な大問題で、ゼロ除算として永い歴史と文化に関わり、広い視点が発展中の生きた数学の中に持てる。
4) 論理には厳格性、精密性、創造性が要求され、数学の精神の涵養に適切である。予断と偏見、思い込みの深さなどについて人間を知ることが出来る。
5) 基礎数学の広範な修正構想に参画でき、物理学など広い研究課題への応用が展望でき、ゼロ除算算法のような新規で基礎数学の新しい手段を身に付けることが出来る。
6) 現在数学は高度化、細分化して、永い学習期間を経て創造的な仕事に取り掛かれるのが普通であるが、ゼロ除算の研究課題では初期段階から、新しい先端の研究に取り掛かれる基礎的な広い研究領域が存在する。ゼロ除算の研究課題は、世にも稀なる夢のある研究課題であると考えられる。― アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる(再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)。

偉大なる研究は 2段階の発展でなされる という考えによれば、ゼロ除算には何か画期的な発見が大いに期待できるのではないだろうか。 その意味では 天才や超秀才による本格的な研究が期待される。純粋数学として、新しい空間の意義、ワープ現象の解明が、さらには相対性理論との関係、ゼロ除算計算機障害問題の回避など、本質的で重要な問題が存在する。 他方、新しい空間について、ユークリッド幾何学の見直し、世のいろいろな現象におけるゼロ除算の発見など、数学愛好者の趣味の研究にも良いのではないだろうか。 ゼロ除算の研究課題は、理系の多くの人が驚いて楽しめる普遍的な課題で、論文は多くの人に愛される論文と考えられる。

以 上

再生核研究所声明335(2016.11.28)  ゼロ除算における状況

ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4.       孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること;  \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156  Qian,T./Rodino,L.(eds.):
       Mathematical Analysis, Probability and
        Applications -Plenary Lectures: Isaac 2015, Macau, China.
           (Springer Proceedings in Mathematics and Statistics, Vol. 177)
             Sep. 2016   305 pp.
             (Springer)     9783319419435   25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上

0 件のコメント:

コメントを投稿