2016年12月28日水曜日

2,500 years in a common pursuit

2,500 years in a common pursuit

Mathematicians have grappled with the intricacies of perfect numbers starting from at least the time of Pythagoras, all the way to modern times
Two of the greatest mathematicians in history had names that began with the letters “Eu”: Euclid and Euler. When I first started reading about mathematics, I often confused these two because their names are so similar. But there’s really no reason for confusion, of course, because they have nothing to do with each other.
Or do they?
Euclid was Greek and lived in Alexandria in the third century BC. He worked on number theory, logic and astronomy, and was particularly interested in geometry. His book Elements is perhaps the most influential mathematical text in history; generations of mathematicians used it to learn the subject, all the way till the early 20th century.
Leonhard Euler lived some 2,000 years after Euclid, in the 18th century. He was Swiss, but lived mostly in St Petersburg and Berlin. He is easily the most prolific mathematician the world has known. His writing about geometry, astronomy, music, topology, number theory and much more fill about 30,000 pages.
They lived two millennia apart, these two remarkable men. But it turns out they do have something in common, and therein lies something of a story about mathematics.
In the sixth century BC, Pythagoras and his mathematical followers studied what we now call “perfect” numbers, though more for their supposed mystical properties than anything else. Three centuries later, Euclid found them interesting as well, and mentions them several times in his Elements. He defined a perfect number as a positive integer whose factors add up to the number itself. Take 4, for example. Is 4 perfect? Its factors are 1 and 2 (because 1 x 4 = 4 and 2 x 2 = 4). But since 1 + 2 = 3, 4 is not a perfect number. Neither are 10 (factors 1, 2, 5) and 12 (1, 2, 3, 4, 6) and 42 (1, 2, 3, 6, 7, 14, 21).
But how about 6? Its factors are 1, 2 and 3—and 1 + 2 + 3 = 6. Thus 6 is perfect, and in fact it is the smallest perfect number. The next smallest is 28 (factors 1, 2, 4, 7, 14). At least one ancient philosopher, Philo of Alexandria, found cosmic significance in these two: Our planet was created in six days, he noted, and our moon takes 28 days to orbit the Earth. Sadly, he couldn’t attach similar import to the next two perfect numbers known to mathematics at the time, 496 (1, 2, 4, 8, 16, 31, 62, 124, 248) and 8128 (I leave you to list its factors).
It wasn’t till the 13th century that the next three perfect numbers were discovered (33,550,336; 8,589,869,056 and 137,438,691,328, but please don’t try listing their factors). As you can tell, perfects are rare indeed.


With me so far? Now this procedure Euclid spelled out generates only even perfect numbers (maybe you can quickly tell why that’s so). But does every even perfect number have this form? Two thousand years after Euclid, Euler answered that with a “Yes”—and his proof is now called the “Euclid-Euler Theorem”.
Think of it: Here is a theorem named for two mathematicians who lived two millennia apart. Something that is truly breathtaking. I would love to know if there is a discovery in biology or anthropology or economics, for example, named for scientists who worked on it though widely separated in time.
But there’s more. The mention above of even perfect numbers might make you ask, are there any odd perfects? Mathematicians have never found one, and so they suspect that there are none—though as always in mathematics, suspicion is nothing. Can we prove there are no odd perfects? Also, just as we know there is an infinite number of primes, are the perfects, though rare, also infinite?
These questions remain unanswered, even though there are mathematicians working on them today. Think of it again: Mathematicians have grappled with the intricacies of perfect numbers starting from at least the time of Pythagoras, all the way to modern times. That’s how hard the mathematics behind this simple idea really is.
The sense of wonder in that mental image of mathematicians plugging away over many centuries was best captured in a 2000 paper (Mathematics And Faith) by the late Princeton University mathematician Edward Nelson. “No other field of human endeavour so transcends the barriers of time and culture,” he wrote. “What accounts for the astounding ability of Pythagoras, Euler, and mathematicians of the 21st century to engage in a common pursuit?”
Like I said: something of a story about mathematics.
Once a computer scientist, Dilip D’Souza now lives in Mumbai and writes for his dinners. A Matter of Numbers explores the joy of mathematics, with occasional forays into other 
sciences.
Comments are welcome at dilip@livemint.com. Read Dilip’s Mint columns at www.livemint.com/dilipdsouza
非常に興味深く読みました:
再生核研究所声明3392016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
他方、人間存在の根本的な問題四苦八苦(しくはっく)、根本的な苦 四苦
·         愛別離苦(あいべつりく) - 愛する者と別離すること
·         怨憎会苦(おんぞうえく) - 怨み憎んでいる者に会うこと
·         求不得苦(ぐふとくく) - 求める物が得られないこと
·         五蘊盛苦(ごうんじょうく) - 五蘊(人間の肉体と精神)が思うがままにならないこと
の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。

これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。
ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。

以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt
   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
再生核研究所声明335(2016.11.28)  ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4.       孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること;  \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156  Qian,T./Rodino,L.(eds.):
       Mathematical Analysis, Probability and
        Applications -Plenary Lectures: Isaac 2015, Macau, China.
           (Springer Proceedings in Mathematics and Statistics, Vol. 177)
             Sep. 2016   305 pp.
             (Springer)     9783319419435   25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上

再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。
ニュートン、ダーウィンの大きな影響を纏めたので(声明314)今回はユークリッド幾何学の影響について触れたい。
ユークリッド幾何学の建設について、ユークリッド自身(アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシア数学者天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。)が絶対的な幾何学の建設に努力した様は、『新しい幾何学の発見―ガウス ボヤイ ロバチェフスキー』リワノワ 著松野武 訳1961 東京図書 に見事に描かれており、ここでの考えはその著書に負うところが大きい。
ユークリッドは絶対的な幾何学を建設するためには、絶対的に正しい基礎、公準、公理に基づき、厳格な論理によって如何なる隙や曖昧さを残さず、打ち立てられなければならないとして、来る日も来る日も、アレクサンドリアの海岸を散歩しながら ユークリッド幾何学を建設した(『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた[1][2][3]。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学透視図法円錐曲線論球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。)。
ユークリッド幾何学、原論は2000年以上も越えて多くの人に学ばれ、あらゆる論理的な学術書の記述の模範、範として、現在でもその精神は少しも変わっていない、人類の超古典である。― 少し、厳密に述べると、ユークリッド幾何学の基礎、いわゆる第5公準、いわゆる平行線の公理は徹底的に検討され、2000年を経て公理系の考えについての考えは改められ― 公理系とは絶対的な真理という概念ではなく、矛盾のない仮定系である ― 、非ユークリッド幾何学が出現した。論理的な厳密性も徹底的に検討がなされ、ヒルベルトによってユークリッド幾何学は再構成されることになった。非ユークリッド幾何学の出現過程についても上記の著書に詳しい。
しかしながら、ユークリッド幾何学の実態は少しも変わらず、世に絶対的なものがあるとすれば、それは数学くらいではないだろうかと人類は考えているのではないだろうか。
数学の不可思議さに想いを致したい(しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
)。
― 数学は公理系によって定まり、そこから、論理的に導かれる関係の全体が一つの数学の様 にみえる。いま予想されている関係は、そもそも人間には無関係に確定しているようにみえる。その数学の全体はすべて人間には無関係に存在して、確定しているようにみえる。すなわち、われわれが捉えた数学は、人間の要求や好みで発見された部分で、その全貌は分か らない。抽象的な関係の世界、それはものにも、時間にも、エネルギーにも無関係で、存在 している。それではどうして、存在して、数学は美しいと感動させるのであろうか。現代物理学は宇宙全体の存在した時を述べているが、それでは数学はどうして存在しているのであろうか。宇宙と数学は何か関係が有るのだろうか。不思議で 不思議で仕方がない。数学は絶対で、不変の様にみえる。時間にも無関係であるようにみえる。数学と人間の関係は何だ ろうか。―
数学によって、神の存在を予感する者は 世に多いのではないだろうか。

以 上

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。
そもそも、ニュートン、ダーウィンの時代とは 中世の名残を多く残し、宗教の存在は世界観そのものの基礎に有ったと言える。それで、アリストテレスの世界観や聖書に反して 天動説に対して地動説を唱えるには それこそ命を掛けなければ主張できないような時代背景が 存在していた。
そのような時に世の運動、地上も、天空も、万有を支配する法則が存在するとの考えは それこそ、世界観の大きな変更であり、人類に与えた影響は計り知れない。進化論 人類も動物や生物の進化によるものであるとの考えは、 人間そのものの考え方、捉え方の基本的な変更であり、運動法則とともに科学的な思考、捉え方が世界観を根本的に変えてきたと考えられる。勿論、自然科学などの基礎として果たしている役割の大きさを考えると、驚嘆すべきことである。
人生とは何か、人間とは何か、― 世の中には秩序と法則があり、人間は作られた存在で
その上に 存在している。如何に行くべきか、在るべきかの基本は その法則と作られた存在の元、原理を探し、それに従わざるを得ないとなるだろう。しかしながら、狭く捉えて 唯物史観などの思想も生んだが、それらは、心の問題、生命の神秘的な面を過小評価しておかしな世相も一時は蔓延ったが、自然消滅に向かっているように見える。
自然科学も生物学も目も眩むほどに発展してきている。しかしながら、人類未だ成長していないように感じられるのは、止むことのない抗争、紛争、戦争、医学などの驚異的な発展にも関わらず、人間存在についての掘り下げた発展と進化はどれほどかと考えさせられ、昔の人の方が余程人間らしい人間だったと思われることは 多いのではないだろうか。
上記二人の巨人の役割を、自然科学の基礎に大きな影響を与えた人と捉えれば、我々は一段と深く、巨人の拓いた世界を深めるべきではないだろうか。社会科学や人文社会、人生観や世界観にさらに深い影響を与えると、与えられると考える。
ニュートンの作用、反作用の運動法則などは、人間社会でも、人間の精神、心の世界でも成り立つ原理であり、公正の原則の基礎(再生核研究所声明 1 (2007/1/27): 美しい社会はどうしたら、できるか、美しい社会とは)にもなる。 自国の安全を願って軍備を強化すれば相手国がより、軍備を強化するのは道理、法則のようなものである。慣性の法則、急には何事でも変えられない、移行処置や時間的な猶予が必要なのも法則のようなものである。力の法則 変化には情熱、エネルギー,力が必要であり、変化は人間の本質的な要求である。それらはみな、社会や心の世界でも成り立つ原理であり、掘り下げて学ぶべきことが多い。ダーウィンの進化論については、人間はどのように作られ、どのような進化を目指しているのかと追求すべきであり、人間とは何者かと絶えず問うて行くべきである。根本を見失い、個別の結果の追求に明け暮れているのが、現在における科学の現状と言えるのではないだろうか。単に盲目的に夢中で進んでいる蟻の大群のような生態である。広い視点で見れば、経済の成長、成長と叫んでいるが、地球規模で生態系を環境の面から見れば、癌細胞の増殖のような様ではないだろうか。人間の心の喪失、哲学的精神の欠落している時代であると言える。

以 上

0 件のコメント:

コメントを投稿