2016年12月31日土曜日

Small Margins, Big Ideas: How Innocent Equations Grow To Run The World

Small Margins, Big Ideas: How Innocent Equations Grow To Run The World 

In 1637, a French lawyer and mathematician by the name of Pierre de Fermat immersed himself in the study of the Greek textbook "Arithmetica" .  Written in the third century AD by the philosopher Diophantus, this book contained several problems which could be encoded in polynomial equations. To solve these problems, one needed to find solutions to such equations in whole numbers.  While reading this book,  Fermat made a remark in the margin of a page:


“It is impossible for a cube to be written as a sum of two cubes, or a fourth power to be written as the sum of two fourth powers, or, in general, for any number which is a power greater than the second to be written as the sum of two like powers ... I have a truly marvellous demonstration of this proposition which this margin is too narrow to contain.”


It would be more than 350 years before Fermat's assertion could be proved (and it is now believed with near certainty that the complete proof is not what Fermat had in mind).  In this quest, deep and beautiful facets of numbers were discovered.  Simple properties of numbers like divisibility and factorization were viewed from a tantalisingly new perspective.  This led to wider generalizations and development of new structures in mathematics.  There were big ideas lurking in the small margins of Fermat's copy of "Arithmetica".  As an independent byproduct, while struggling with the beautiful and intricate questions that these structures gave rise to, mathematicians ended up making some observations which ensure safe digital transfer of information in such a way that only the intended receiver of the information can intercept it.
A century later, in 1736, Leonhard Euler (an immensely talented mathematician, physicist and engineer) looked at a network of seven bridges connecting the islands and mainlands of the city of Königsberg (now known as the Russian city of Kaliningrad).  He wondered if one could walk through the city by crossing each bridge exactly once. That is, irrespective of where you lived in the city (islands or mainland), could you leave your home, travel through each bridge exactly once and return home? It did not take Euler very long to deduce that this is not possible.  To answer this question, he interpreted the bridges as edges between the islands and mainlands, which he denoted as points.


This framework, now known as graph theory, helps us to view various phenomena in terms of a graph, that is, a mathematical model consisting of various nodes and edges (or bridges) that connect these nodes.  This viewpoint has inspired fundamental research that links graphs to other areas in mathematics, theoretical computer sciences and biology.  It also enables us to build well-connected communication networks at optimal cost, surf the internet smoothly and navigate efficiently through road networks to reach our destination.
There are several other instances of beautiful ideas which originated in "innocent" circumstances and were developed over centuries of laborious efforts.  These now yield rich dividends for us, either through a better understanding of the universe or through technological breakthroughs without which many of us cannot imagine our lives.
What attracted Euler, Fermat and many others to these ideas and problems? What made the mathematical community persist with these problems and develop these ideas for multiple centuries? Did they categorise their ideas into "pure" or "applied" or "translational"  or "marketable" as we tend to do today? Did they perceive depth in these ideas which would help them (and others) to improve their understanding of nature? Or were they simply motivated by the sheer inherent beauty of these ideas and observations?
This column seeks to answer these questions.  The goal of this column is to delve into some ideas and discoveries that have laid the foundations of mathematics as we practise it today.  We will attempt to explore these ideas, trace their evolution and analyze what these ideas mean to us today.
As we welcome a new year, our nation prepares to embrace digitization at a scale much larger than any other nation has attempted before.  So, to start with, over the next few months, let us try and understand the mathematics that goes behind this grand venture.

非常に興味深く読みました:

再生核研究所声明3392016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
他方、人間存在の根本的な問題四苦八苦(しくはっく)、根本的な苦 四苦
·         愛別離苦(あいべつりく) - 愛する者と別離すること
·         怨憎会苦(おんぞうえく) - 怨み憎んでいる者に会うこと
·         求不得苦(ぐふとくく) - 求める物が得られないこと
·         五蘊盛苦(ごうんじょうく) - 五蘊(人間の肉体と精神)が思うがままにならないこと
の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。

これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。
ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。

以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt
   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research

再生核研究所声明335(2016.11.28)  ゼロ除算における状況

ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4.       孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること;  \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156  Qian,T./Rodino,L.(eds.):
       Mathematical Analysis, Probability and
        Applications -Plenary Lectures: Isaac 2015, Macau, China.
           (Springer Proceedings in Mathematics and Statistics, Vol. 177)
             Sep. 2016   305 pp.
             (Springer)     9783319419435   25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上

再生核研究所声明316(2016.08.19) ゼロ除算における誤解

(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                     
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか

ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0x= 0 である。しかしx0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

0 件のコメント:

コメントを投稿