2016年12月6日火曜日

ビル・ゲイツが選ぶ、2016年の休暇に必読の書籍5冊

ビル・ゲイツが選ぶ、2016年の休暇に必読の書籍5冊

Kerry A. Dolan ,Forbes Staff

ビル・ゲイツは幼少期から読書好きで知られ、家にあった百科事典を子供時代に完読した。親たちはその後、「ディナーの席では読書禁止」というルールを課したほどだ。

しかし、ゲイツの読書熱はやまず、貪るように本を読み続けた。彼は「ゲイツ・ノート・ブログ(GatesNotes blog)」で読んだ本を定期的に掲載しているが、このほど2016年に感銘を受けた書籍のリストを公開した。その内容は多岐にわたり、ゲイツは「テニスからテニスシューズまで、ゲノム研究からリーダーシップまで」と記している。そのセレクトはゲイツの関心の幅広さとノンフィクションへの愛を示している。

下記にビル・ゲイツが選んだ5冊の本を紹介しよう。

「Shoe Dog」:フィル・ナイト著
フィル・ナイトはナイキの共同創業者で会長を務め、今年6月に退任した。ゲイツはナイトの回顧録である「Shoe Dog」を、ナイキ成功への道のりを赤裸々に描き、様々な過ちや不注意が引き起こした混乱を包み隠さず描いている点を評価している。

「String Theory」:デヴィッド・フォスター・ウォレス著
トマス・ピンチョン以降のポストモダン文学の旗手と呼ばれるウォレスが、テニスについて書いたエッセイ集。ゲイツはマイクロソフト時代にテニスをやめたが、ここ最近になって再びプレイしているという。(未邦訳)

「遺伝子 個人的な生い立ちについて」:シッダールタ・ムカジー著
医師でありピューリッツァー賞受賞作家であるムカジーがゲノム科学に絡む問題について執筆したノンフィクション。ゲイツによると「最新のゲノム科学が引き起こす倫理的課題を浮き彫りにしている」という。
※原題「The Gene: An Intimate History。近日邦訳が刊行予定

「The Myth of the Strong Leader」:アーチー・ブラウン著
ブラウンはイギリスの政治学者。邦訳された著書としては「共産主義の興亡」がある。「The Myth of the Strong Leader」は2014年の著作で偉大なリーダーたちについて書かれた書物。ゲイツによると「歴史に多大な貢献を果たしたリーダーらは、世間が思うほど強い人間ではなかったことを示している」という。「彼らはむしろ周囲の人々と協調し、意見に耳を傾ける人物だったことが分かる」としている。(未邦訳)

「The Grid: The Fraying Wires Between Americans and Our Energy Future」:Gretchen Bakke著
文化人類学者のGretchen Bakkeが米国のエネルギー事情について執筆した書籍。ゲイツは高校時代に最初に手がけた仕事が、電力事業者向けのプログラムを書くことだったため、電力問題には特に関心が強いという。「この本を読むことにより、電気がいかに現代人の暮らしを変えたか。また、そこにどのような課題があるかを理解できる」としている。http://blogos.com/article/200854/

再生核研究所声明231(2015.5.22)本を書く人の気持ち、読む人の気持ち ― 本とは何か
最近、立て続けに良い本を紹介されて 読書して、何のために読書するのだろうかと考え、そもそも本とは何だろうかと想った。そこで、本について思いのままに述べたい。

まず、本とは何のために存在するのだろうか。本とは何だろうか。まず、定義をウィキペディアで確かめて置こう:
(ほん、: book)は書物の一種であり、書籍雑誌などの印刷製本された出版物である。
狭義では、複数枚の紙が一方の端を綴じられた状態になっているもの。この状態で紙の片面をページという。本を読む場合はページをめくる事によって次々と情報を得る事が出来る。つまり、狭義の本には巻物は含まれない。端から順を追ってしかみられない巻物を伸ばして蛇腹に折り、任意のページを開ける体裁としたものを折り本といい、折本の背面(文字の書かれていない側)で綴じたものが狭義の「本」といえる。本文が縦書きなら右綴じ、本文が横書きなら左綴じにする。また、1964年ユネスコ総会で採択された国際的基準は、「本とは、表紙はページ数に入れず、本文が少なくとも49ページ以上から成る、印刷された非定期刊行物」と、定義している。5ページ以上49ページ未満は小冊子として分類している[1]
本には伝えるべき情報が入っていて、人に伝える働きがあることは認められるだろう。そこで、本を書く立場と本を読んで情報を得る立場が 存在する。この声明の主旨は本の体裁や形式ではなく 本質的なことに関心がある。
何故本を書くか? 記録を残して伝えたい、これは生命の根源である共感、共鳴を求める人間存在の原理に根ざしていると考えられるが、伝えたい内容は、心情的な面と相当に客観性のある情報、記録、事実の表現にゆるく分けられるのではないだろうか。事実の記録、記述として ユークリッド原論のように数学的な事実、理論を 感情を入れずに客観的に述べているのは典型的な例ではないだろうか。様々な記録が本になっている場合は多い。マニュアルや辞書なども、そう言えるのではないだろうか。他方、多くの小説や物語、手記、論説、学術書、回想記などは 相当な主観や感情が表現されていて、いわば自己表現の性格の強いものが 世に多い。ここでは、主として、後者に属する本を想定している。
このような状況で、書く人の立場と、それを読む立場について、考察したい。
書く人は書きたい存念が湧いて書く訳であるが、共感、共鳴を求めて、いわば生命の表現として 絵描きが絵を描くように、作曲家が作曲するように 書くと考えられる。意見表明などは明確な内容を有し、主張を理解できる場合は多いが、詩や短歌などは より情感が強く現れる。この部分で最も言いたいことは、我々の感性も 心もどんどん時間と共に環境とともに 変化していくという事実である。従って著者がシリーズや 複数の本を出版しても、著者の書いた状況によって、相当に変化して行くということである。 若い時代に 恋愛小説を書いたり、人生についての想いを書いたものが、後になっては、とても読めない心情になる事は 相当に普遍的な状況のようにみえる。作者の心情、感性、心がどんどん変化していることをしっかりと捉えたい。
しかしながら、本は多く宣言されているように 永年保存を基本とするような、何時までも残る性格が有り、それゆえに書く者にとっては、後悔しないような、慎重さが要求されるのは 当然である。
次に如何に本を読むべきかの視点である。これは共感、共鳴したい、あるいは価値ある知識を入れたい、情報を得たい等、しっかりとした動機があるのは確かである。教科書や専門書、旅行案内書、辞書など、明確な動機を持つものは世に多く、そのような本の選択は多くの場合、易しいと言える。
ここで、特に触れたいのは、文芸書や小説、随筆など、著者の心情が現れている本などの選択の問題である。 現在、 本の種類はそれこそ、星の数ほどあり、本の選択は重大な問題になる。本には情報といろいろな世界が反映されているから、個人にとって価値あるものとは何かと真剣に、己に、心に尋ねる必要がある。いわゆる、物知りになっても いろいろな世界に触れても それが 私にとって 何になるのか と深く絶えず、問うべきである。知識や情報に振り回されないことは 大事ではないだろうか。
我々の時間には限りがあり、 我々の吸収できる情報も、触れられる世界にも大きな制限がある。
そこで、選択が重要な問題である。
本声明の結論は 簡単である。 本の選択をしっかりして、吸収するということである。
これは、自分に合ったものを探し、精選するということである。自分に合った著者のちょうど良い精神状態における本が良いのではないだろうか。社会にはいろいろな人間がいるから、自分に合った人を探し、そこを中心に考えれば 良いのではないだろうか。この文、自分に合った人を探し、そこを中心に考えれば 良いのではないだろうか は広く一般的な人間関係やいろいろな組織に加わる場合にでも大事な心得ではないだろうか。選択の重要性を言っている。上手い本に出会えれば、それだけ人生を豊かにできるだろう。
それらは、原則であるが、そうは言っても自分の好きなものばかりでは,  視野と世界を狭めることにもなるから、時には積極的に新規な世界に触れる重要性は 変化を持たせ、気持ちの転換をして、新規な感動をよびさますためにも大事ではないだろうか。 この点、次の声明が参考になるであろう:
再生核研究所声明85(2012.4.24):  食欲から人間を考える ― 飽きること。

以 上

再生核研究所声明335(2016.11.28)  ゼロ除算における状況
ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。
2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。
3. 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
4.       孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
5. x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること;  \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
6. 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
7. 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
8. 接線法線の考えに新しい知見。曲率についての定義のある変更。
9. ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。
10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。
11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。
12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。
13.確定された数としての無限大、無限は排斥されるべきこと。
14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。
15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。
16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。
17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。
18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

資料:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
*156  Qian,T./Rodino,L.(eds.):
       Mathematical Analysis, Probability and
        Applications -Plenary Lectures: Isaac 2015, Macau, China.
           (Springer Proceedings in Mathematics and Statistics, Vol. 177)
             Sep. 2016   305 pp.
             (Springer)     9783319419435   25,370.
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える
以 上

再生核研究所声明332(2016.11.17) 再生核の著書: Theory of Reproducing Kernels and Applications, Developments in Mathematics 44 © Springer 2016 について ー 内容

本書は澤野嘉宏氏の凄い才能と、献身的な努力で8年以上の歳月を掛けて、出版されたので、まず澤野氏に深く感謝したい。さらに、研究と著書に 本質的に貢献された 山田正人、松浦勉、山田陽、藤原宏志 氏に、また本書謝辞欄に挙げられた多くの研究者に、英文や原稿形式について深く検討され、素晴らしい装填で本書を出版されたSpringerの方々に深く感謝したい。幾つかの観点に分けて本書について、触れていきたい。今回は内容について述べたい。
本書は再生核の一般論とその応用を広く纏めたもので、本文452ページで大著と言える。大勢であるが、理工系学部程度の知識を前提にすれば、本書の内容を殆ど記述できるのは、既に本書の特徴であると言える。実際、現在殆どの数学の研究学術書が高度化、専門家、細分化して言わば、専門外の人たちには興味、関心を持たれず、また理解できないものが殆どである実情からみれば、本書はそのような観点で特徴的な内容であると言える。実際、本書は学部での、ベクトル解析、微分方程式、複素解析、関数解析、フーリエ解析、ラプラス変換などに続く、多くは新規な研究成果の内容である。再生核の理論の内容よりも、本書を学習するとどのような効果があるのか、何ができるのかという、観点で内容を述べたい。
本書の背景に存在する精神はピタゴラスの定理の一般論、展開である。線形変換で、逆変換を確立する方法が広く議論される、微分・積分方程式を含むいろいろな方程式の近似的な解法が議論される。ここで、特に計算機で具体的に解を構成する方法が理論と共に具体的な公式の形で与えられる。ラプラス変換の実逆変換公式が確立されている。藤原宏志氏は藤原氏の無限精度の概念による計算機システムで既に8年以上も前に6000元の一般(密行列)の線形方程式を有効桁数600桁の精度で解かれて、難問とされてきた実ラプラス変換の実際的な解法に成功・可能にされた。その数学的な理論と様々な方程式の計算機による解法が与えられている ― それは、有効な新しい型の離散化法、究極離散化法として、発展、提案されている。その結果、究極と考えられるサンプリングの定理 ― 連続量を可附番無限な量で表現する原理 ― も与えられている。再生核の理論から美しいいろいろ基本的な不等式が導かれるが、具体的な例が与えられ、再生核の一般理論における深い理論の象徴として、山田陽氏の不等式における等号問題を論じている。関数の近似や極値問題 は本書の基本的な課題である。非線形変換を線形変換で捉える原理が再生核の理論で考えられている。非線形システムと線形システムの入力と出力の関係から、システムを定める同定問題が議論されている。一般分数関数の概念・表現は 最近のゼロ除算の概念 に発展させたコンボルーシオン方程式の解法を与える新規な概念で新しい研究課題である。― 特別な帰結として、ゼロで割ること、ゼロ除算はその自然な意味で可能であり、結果自体z/0=0は自明である。― 有限個のデータから、方程式の近似解を構成する方法が、計算機による解法の視点から、多くの具体的な偏微分方程式や特異積分方程式の解について与えられている。再生核に関する最近の話題も広く言及されている; すなわち、いろいろなノルム不等式、関数族の包含関係の特定問題、関数の滑らかさを計算機で判定する方法、偏微分方程式における初期値問題をそれに関係する方程式の固有関数族を用いて具体的に構成する方法、一般的な線形写像の逆写像の表現方法、超関数デルタ関数及びグリーン関数と再生核の関係など。拡張された意味にける再生核は超関数デルタの一般化と考えられ、その結果、関数族からなる可分なヒルベルト空間は一般化再生核空間と見なせることが導かれている。さらに、付録で、任意写像の逆写像を考える非常に一般的で抽象的な理論の発展から導かれた、陰関数の存在定理が保証する陰関数の具体的な陽な表現定理が述べられている。この基本的な結果は特記されるべきであると考えられる。本書は再生核の理論の総合的な著書になるように、歴史や文献が出来るだけ詳しく述べられている。再生核の理論はサポートベクトルマシン、統計的学習理論、データ解析、グラフの理論、ランダムフィールド評価問題、確率過程論、逆問題、素粒子論、量子力学などと深い関係があり、それらの様子にも触れられている。基本的で具体的な応用の豊かさから、再生核の理論は数学関係者を越えて、微積分学や線形代数学と同様に多くの数理科学の関係者に有益な数学であると考えられる。

以 上
再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                     
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.

0 件のコメント:

コメントを投稿