2018年9月1日土曜日

美しさには、ワケがある! 人の本能に訴えかける、美の比率を見つけよう

美しさには、ワケがある! 人の本能に訴えかける、美の比率を見つけよう

彫刻や絵画、建築物などの作品を見て美しいと感じた時、あなたはその美しさの理由を説明できますか? 美しさには、デザインや色などさまざまな理由が影していますが、実はこれらの美的センスの他にも意外な理由がありました。

誰もが美しいと感じる理想の比率「黄金比」

建築物や彫刻、その他のさまざまなデザインを見て、人が意識のうちに美しいと感じる物には、色合いや好みなど、いくつかの理由が考えられます。その中の一つが黄金比です。黄金比とは、縦横の率が1:(1+√5)/2、つまり約1:1.6で構成される率をします。ルーヴル美術館にある『ミロヴィーナス』や、レオナルドダ・ヴィンチの作品として知られる『モナ・リザ』、ピラミッド底辺と高さなどにも、黄金比活用されています。

これだけを見ると、に建造物や美術作品に用いられる率だと思う人もいるかもしれません。しかし、実は私たちの身の回りにも、黄金比を取り入れた物を見つけることができます。例えば、名刺トランプキャッシュカード、パスポートなどがその一例です。これらは普段何気なく手に取る機会の多い物ですが、縦横の率に黄金比が用いられていることで、なじみやすさが感じられるのでしょう。

また、ヒマワリの種やバラびらの並び方を観察してみると、黄金比に沿って配列度が決まっていることが分かります。このように、自然界にも美しさの秘密である黄金比が隠れているのです。

黄金比に負けず劣らず美しい「白銀比」

ミロヴィーナス』や『モナ・リザ』、ピラミッドのように、黄金比を基に美しさを表現する海外と異なり、日本では古くから白銀比が好まれてきました。白銀比とは、縦横の率が1:√2、つまり約1:1.4で構成される率をします。

内に点在する寺社や像、日本画の中には白銀比を意識して作られた作品もあり、日本の文化と密接な関係にあることから、「大和」という別名が付いているのが特徴です。日本人にとって身近な率であるため、白銀比を意識したキャラクターデザイン意識のうちに安心感を覚え、親しみやすさを感じやすいと考えられます。

また、私たちの身の回りでは、A4判やB5判などのコピーや、文庫本の率としても知られています。白銀比は、2分割を何度繰り返しても率が変わらないため、実際にコピーを半分に折って確かめてみるのも面いでしょう。

黄金比や白銀比のように、身近に隠れる数学を見つけてみよう

建築物や彫刻、絵画、植物などを見て、ふと美しいと感じた時、私たちはついデザインや色合いなどの芸術的知識や、美的センスが美しさを作り出していると考えてしまいがちです。しかし、実は美しさの裏には、黄金比のように数学が隠れていることがあります。また、寺社や像を見て安心感を覚えた時、その環境や佇まいに心を動かされたと感じるかもしれませんが、その親しみやすさの裏には、白銀比が隠れていることもあるのです。
思わず惹かれる美術作品や物に出合ったら、縦横の率を測ってみると、新たな黄金比白銀比を発見できるかもしれませんよ。


私たちの生活には気付いていない美の率、「黄金比」「白銀比」がいくつも存在します。これまで気付かなかった美の率を見つけることで、数学が身近に感じられ、その深さや面さに気付くことができます。身近に隠れる数学興味を持ったなら、ぜひ「数学」を学んでみてください。さらに世界が広がることでしょう。
【出典】
NIKKEI STYLE|あの名画のきは数学が生んだ 美・自然のなかの数学(1)
https://style.nikkei.com/article/DGXNASFK2602O_W3A720C1000000

NIKKEI STYLE|ヒマワリ・稲妻…自然界を秘的な「数式」 美・自然のなかの数学(2)
https://style.nikkei.com/article/DGXNASFK2901O_Z20C13A7000000?channel=DF130120166104

Skypillar建築の美しさについて2 ~率~
http://www.skypillar.com/advice/advice_8.htm

casa|“日本人にとって本当に美しい”を追及する「casa amare」が取り入れた大和とは!? 
https://hash-casa.com/2016/12/04/amare-beautify/

SEZAX|身の回りにある、黄金比白銀比
http://www.sezax.co.jp/monthly_up/vol_76.html

アイフルホーム|近年、日本人に好まれているインテリアの種類は? 
http://eyefulhome-reform.jp/column/column26.php


ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本

再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算
次のダ・ヴィンチの言葉を発見して、驚かされた:
ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
我々の周りにある偉大なことの中でも、無の存在が最も素晴らしい。その基本は時間的には過去と未来の間にあり、現在の何ものをも所有しないというところにある。この無は、全体に等しい部分、部分に等しい全体を持つ。分割できないものと割り切ることができるし、割っても掛けても、足しても引いても、同じ量になるのだ。
レオナルド・ダ・ヴィンチ。ルネッサンス期を代表する芸術家、画家、彫刻家、建築技師、設計士、兵器開発者、科学者、哲学者、解剖学者、動物学者、ファッションデザイナーその他広い分野で活躍し「万能の人(uomo universale:ウォモ・ウニヴェルサーレ)」と称えられる人物
https://systemincome.com/7521
そもそも西欧諸国が、アリストテレス以来、無や真空、ゼロを嫌い、ゼロの西欧諸国への導入は相当に遅れ、西欧へのアラビヤ数字の導入は レオナルド・フィボナッチ(1179年頃~1250年頃)によるとされているから、その遅れの大きさに驚かされる:

フィボナッチはイタリアのピサの数学者です。正確には「レオナルド・フィリオ・ボナッチ」といいますが、これがなまって「フィボナッチ」と呼ばれるようになったとされています。
彼は少年時代に父親について現在のアルジェリアに渡り、そこでアラビア数字を学びました。当時の神聖ローマ皇帝・フリードリヒ2世は科学と数学を重んじていて、フィボナッチは宮殿に呼ばれ皇帝にも謁見しました。後にはピサ共和国から表彰もされました。
ローマ数字では「I, II, III, X, XV」のように文字を並べて記すため大きな数を扱うのには不便でした。対してアラビア数字はローマ数字に比べてとても分かりやすく、効率的で便利だったのです。そこでフィボナッチはアラビア数字を「算術の書」という書物にまとめ、母国に紹介しました。アラビア数字では0から9までの数字と位取り記数法が使われていますが、計算に使うにはとても便利だったために、ヨーロッパで広く受け入れられることになりました。(歴史上の数学者たち: レオナルド・フィボナッチ
historicalmathematicians.blogspot.com/2012/03/blog-post.html Traduzir esta página 02/03/2012 -)
ゼロや無に対する恐怖心、嫌疑観は現在でも欧米諸国の自然な心情と考えられる。ところが上記ダ・ヴィンチの言葉は 如何であろう。無について好ましいものとして真正面から捉えていることが分かる。ゼロ除算の研究をここ4年間して来て、驚嘆すべきこととして驚かされた。ゼロの意味、ゼロ除算の心を知っていたかのような言明である。
まず、上記で、無を、時間的に未来と過去の間に存在すると言っているので、無とはゼロのことであると解釈できる。ゼロとの捉え方は四則演算を考えているので、その解釈の適切性を述べている。足しても引いても変わらない。これはゼロの本質ではないか。さらに、凄いこと、掛けても割っても、ゼロと言っていると解釈でき、それはゼロ除算の最近の発見を意味している:  0/1 =1/0=0。- ゼロ除算を感覚的に捉えていたと解釈できる。ところが更に、凄いことを述べている。
この無は、全体に等しい部分、部分に等しい全体を持つ。これはゼロ除算の著書DIVISION BY ZERO CALCULUS(原案)に真正面から書いている我々の得た、達したゼロに対する認識そのものである:
{\bf Fruitful world}\index{fruitful world}
\medskip

For example, in very and very general partial differential equations, if the coefficients or terms are zero, we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we see the converse, we see that the zero world is a fruitful one and it means some vanishing world. Recall \index{Yamane phenomena}Yamane phenomena, the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show some changes as in the Yamane phenomena.
\medskip

{\bf From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure, a story starts from the zero and ends to the zero. This will mean that $0$ means all and all are $0$, in a sense. The zero is a mother of all.
\medskip

その意味は深い。我々はゼロの意味をいろいろと捉え考え、ゼロとはさらに 基準を表すとか、不可能性を示すとか、無限遠点の反映であるとか、ゼロの2重性とかを述べている。ゼロと無限の関係をも述べている。ダ・ヴィンチの鋭い世界観に対する境地に驚嘆している。
以 上
*057 Pinelas,S./Caraballo,T./Kloeden,P./Graef,J.(eds.): Differential and Difference Equations with Applications: ICDDEA, Amadora, 2017. (Springer Proceedings in Mathematics and Statistics, Vol. 230) May 2018 587 pp.
 
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れた。少し、違った観点から、数学の本質論と社会への影響について述べたい。
数学とは関係の集まりであるが、時間にもエネルギーにもよらない数学の論理の神秘性から、神学のような性格を帯びていて、およそ世に絶対的という概念が有ればそれは数学くらいで 特別に尊い存在であると考えられてきた。ところが非ユークリッド幾何学の出現で、数学についての考えは本質的に変えられ、数学とは ある仮定系、公理系から論理的に導かれた関係の総体が その公理系から導かれた一つの数学で、数学自身は絶対的な真理や世の価値とは無関係な存在であるという認識に改められた。数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ価値がないものであるとも言える。― 近年 異常な評価時代に、論文、著書など、引用情報やダウンロード数などが重視される世相を作っている。現在は表面的なデータによる行き過ぎとしても、将来は相当に裏付けの伴う評価に発展して、評価は人工知能が活躍する分野に成るのではないだろうか。
この観点は、2014.2.2に発見されたゼロ除算とゼロ除算算法の研究姿勢に大きなヒントを与えてくれる。そもそもゼロ除算は1000年以上も不可能であり、考えてはいけない が 数学界の定説であった。それが全然予想もされなかった結果であったと報告されても、全く新しい数学で、世の常識と違うわけであるから、始めは、興味も、関心も抱かないのは当然とも言える。気づいてみれば、ゼロ除算は本質的には定義であり、仮定とも言えるので、上記数学の観点からは、新しい数学とも言える。そこで、ゼロ除算の世界を広く社会に紹介するために初等数学全般に亘ってゼロ除算の影響を調べてみることにした。新しい数学がどのような意義を有するかを問題にした。
誠に皮肉なことには、ゼロ除算の、ゼロ除算算法の直接の影響として、ユークリッド、アリストテレスの世界観を変える、結果を導くことである。始めから重大な問題を提起してきた。すなわち、無限遠点はゼロで表される、すべての直線には原点を加えて考えるべきである。― 異なる平行線は原点を共有するとなって、 ユークリッドの平行線の公理に反し、世の連続性に対するアリストテレスの世界観にも反することになる。さらに、円の中心の円に関する鏡像は無限遠点でなく、円の中心自身であるとなって、古典的な結果に反することになる。驚嘆すべきことに、x、y直交座標系で y軸の勾配は ゼロであるという結果をもたらす。すなわち、 \tan(\pi/2) =0 である。
それで、初等数学全般に大きな影響が出ることが明かになった。
大事な論理的な原理は、新しい定義、仮定からゼロ除算は展開されるので、得られた結果、導かれた結果については吟味を行い、結果について評価する態度が大事である。ところが考えてみれば、数学そのものが実はそうであった。数学も、得られた結果がどのような意味が、自分の好みを越えて価値があるか否かを絶えず吟味していきたい。吟味して行かなければならない。
以 上


再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
ここ一連の声明で数学について述べてきた:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れ、違った観点から、数学の本質論と社会への影響について述べた。さらに
数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、逆に、未来人が高い評価を与える場合もある。
そこで自然な考えが突然浮かんだ:
2017.11.13.10:45 突然、この流れで考えが湧いた。数学を芸術として楽しもうという新しい分野の創造の提案である。
数学は抽象的な理論、文章や式で表される場合が多く、社会の一般の方の理解が難しい不幸な状況にある。数理に興味を抱く多くの人々を遠ざけ、数理に喜びや楽しみがあるのに、スポーツやドラマ、芸術、文学などに比べて民衆の享受に寄与していないのは、数理の美しい世界の存在に比べて誠に残念な状況であると危惧される。― 数理の話題、ニュース、情報の極端に少ない現状からそう判断せざるを得ないのではないだろうか。数理科学を楽しみ、数理の世界の社会貢献、裾野の広がりを求めて、数学芸術 分野の創造と発展を提案したい。少し、具体的に触れるが いろいろな衆知を集めて構想そのものの進化を期待したい。
数学芸術は 数学の内容を、絵画やその他の手段で簡明な表現を求め、音楽や絵画が感動を呼び起すように 美しい表現を追求していく。
数理科学の社会的文化的基盤を拡充、充実発展させ、数理科学を芸術のように楽しみ、かつ 真智への愛 を育てる。
以 上


再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い


人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上

0 件のコメント:

コメントを投稿