2018年9月28日金曜日

て役に立つんですか?」と聞かれたら――

NEW !
テーマ:

「天文学って役に立つんですか?」と聞かれたら――国立天文台・小久保英一郎教授インタビュー - 「文春オンライン」編集部

 

今年6月から岩手県奥州市で運用をスタートしたスーパーコンピュータ「アテルイII」。プロジェクトの責任者は、国立天文台の小久保英一郎教授(50)だ。計算速度が3倍に向上した計算機を使い、宇宙で起こっている現象をシミュレーションすることで様々な研究が進められている。理論天文学の中でも、シミュレーション分野の研究者として「情熱大陸」や「又吉直樹のヘウレーカ!」などメディアへ多数出演し、「太陽や月は、どうやってできたの?」「宇宙人はいるの?」そんな素朴な疑問に分かりやすく答える小久保教授に話を聞いた。
小久保英一郎さん

岩手県奥州市に「アテルイII」を作った意外な理由

――国立天文台の三鷹キャンパス、広いですねー。
小久保 敷地面積は約10万坪あります。豊かな自然に恵まれていて、春は桜がきれいですし、秋には紅葉も。天文学の観測装置が点在しています。
――国立天文台本部ではなく、岩手県奥州市に、新しいスーパーコンピュータ「アテルイII」を作ったのはどうしてですか?
小久保 スーパーコンピュータってすごく熱くなるので、いかに冷やすかというのが大きな問題となります。ありていに言えば、涼しい場所のほうが効率よく、電気代があまりかからずに済むんです。6月1日から本格的に運用を開始したので、3カ月経ちました。稼働率は9割以上で、すでに大忙しです。
――そういえば、映画『サマーウォーズ』でも、コンピュータを氷で冷やすシーンがありましたね。
小久保 気温が低いほうが冷やしやすいんです。国立天文台の中で最北のキャンパスが岩手県の水沢キャンパスでして。先々代の台長が決めました、「水沢に行きなさい」と。
――「アテルイII」というネーミングにも土地柄を感じます。
小久保 前身のスーパーコンピュータ「アテルイ」の名前は、水沢行きが決まった時に僕はすぐ思いついて、みんなが賛成してくれたので決まりました。約1200年前に、あの一帯を治めていた蝦夷(えみし)の長が由来です。アテルイのように果敢に「宇宙の謎に挑んでほしい」という願いを込めて。僕はもともと仙台の出身なので、どちらかというと朝廷よりは、蝦夷派というか(笑)。地の利を生かしてアテルイがあの地で少数で何十年も戦ったように、頭を使って賢く戦う。そういう計算機(コンピュータ)になってほしいという気持ちがあります。

宇宙を再現したり、月を作ったり

――スーパーコンピュータを使うと、宇宙の何が分かるんですか?
小久保 望遠鏡では見ることができない宇宙を描くことができます。例えば僕が研究している太陽系などの惑星系の形成について言えば、そもそも惑星系ができるのには何十億年もかかるものなので、そんなにずっと望遠鏡では見ていられないですよね。しかも、惑星系は宇宙の中ではとても小さいスケールの世界なので、望遠鏡で惑星系が形成される過程の詳細な様子までは見えないし。じゃあどうするかというと、コンピュータを使ってその中に「宇宙を再現」して、例えば、地球を作ったり、月を作ったり。
 3次元に時間軸を加えた4次元の宇宙を自分の手で作りだし、そこで何が起きるかを計算して調べることができる。その計算というのは、今僕らに分かっている宇宙の物理法則を表した計算式をコンピュータが解くということ。宇宙で何が起きたのか、これから何が起こるのかということが分かるんです。
――観測ではなくて、理論や計算式によって。
小久保 そうです。望遠鏡で宇宙を見て、写真を撮ったりする。これは2次元の情報ですよね。しかも、その瞬間の。でも、現実世界はもちろん3次元空間で、さらに時間と共に物事は変化していくわけです。
「アテルイII」の予算は、年間で約3億円。国立天文台では大きな望遠鏡とか予算をたくさん使っているところがあるのですが、億単位の予算なので、結構苦労して確保しています。もともと、スーパーコンピュータってレンタルなんです。だから運用期間は5~6年間と決まっています。
――レンタルなんですね! 知らない世界です。
小久保 そうなんですよ。新しいスーパーコンピュータを導入する前、2年くらいは「仕様書」の策定や予算の確保など、本来の研究とは離れたところで仕事がたくさんあります。

シュミレーション分野を選んだのは「全部自分でできるから」

――小久保先生が、シミュレーション天文学の道を選んだ決め手は?
小久保 さっきの話とつながりますが、いま、天文学の研究をするとなると手法として「観測」と「理論」の両輪があり、さらに理論は純粋理論とシミュレーションの2つに分かれます。つまり観測、理論、シミュレーションの“三つ巴”なんです。決め手と言われると、全部自分でできるからですかね。自分でプログラムを書いて、僕の場合だったら地球を作ってみたり、月を作ってみたりできる。それが「ちょっと面白そうだな」って思って。
 僕は小さい頃から宇宙と同じように、生き物にも興味があったんです。「宇宙人はいるのかな」とか。だから、宇宙の中でも生き物が存在できそうな「惑星」を研究しようと思いました。僕は、銀河系は生命に満ちあふれているという考えを持っています。その理由は、地球に生命が存在するから。宇宙に太陽みたいな星はたくさんあるし、その周りに普通に惑星があることも最新の研究で分かってきています。

宇宙に生命は存在する?

――宇宙人、いるかもしれないですね。
小久保 宇宙人の定義によりますが、生命は存在すると思いますよ。それから、実はコンピュータも小学校の頃から好きだったんですよね。自分で宇宙を実験的に作るっていうのは、自分が全部をコントロールできるので、面白いんですよ。
――好きなことが全部できる。
小久保 そうそう。好きだった宇宙、惑星、コンピュータのこと全部ができるんです。計算機は人間にできない計算ができるから、すごいです。苦労して導入している分、子供の頃の感覚とはちょっと違いますが、やっぱりアテルイには愛着がありますね。http://blogos.com/article/327017/?p=1

ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本


再生核研究所声明 453 (2018.9.28): The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-23
科学雑誌関係者、教育・研究者及び報道関係者:

発展しているゼロで割る問題、ゼロ除算については 世の理解は適当ではなく、間違えとも言える見解であふれている、また初等数学全般に基本的な欠陥があると考えられます。一般向きには
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
で4年間を越えて解説を続けています。 

今回、成田のホテルで開催される国際会議に招待を受けました。 そこで、素人向きに全体的な解説を行い (10月23日11:00-12:00)午後3時頃まで いろいろな質問にお答えしたいと思います。 そこで、この機会を活かして、ゼロ除算の驚くような世界を紹介できれば幸いです。 経費などについては責任者からのメールを下記に添付していますので、ご参考にして下さい。 尚、報道関係者は荘重な雰囲気で会議を持ちたいという気持ちに気づかって頂けるようにお願いします。場合によっては参加を拒否される可能性もあります。
___________________________
The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October  22-23
John Martin, Program Coordinator

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Euclid: 1/0=0/0=z/0= \tan (\pi/2)=0.
再生核研究所声明376(2017.7.31): 現代初等数学における間違いと欠落  ゼロ除算の観点から
_____________________________________________________________________
Dear Dr Saitoh,

If a person participates in our session around the morning and afternoon free discussions, he should pay euro 250. If the person registers in a group of 5 or more, the amount will be reduced to euro 180 per person. The morning session is very valuable and has the potential to bring change in the education system.
For one night stay on 22nd October, he needs to pay euro 150.
I hope everything is clear. 
Kindly let me know if any query.
Thanks!
Regards,
John
                                                                      以 上

再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館
(2018年9月8日―24日 

2018.9.17. 展示書籍などを拝見させて頂きました。大変賑わっていて関心の大きさが感じられました。時間の関係で じっくり、詳しくとは行きませんでしたが、全体の案内(知の連鎖ゾーン)で、初期、初めにアリストテレスとユークリッドが 在って、中間くらいにニュートン、最後がアインシュタインで 世界史を壮観する想いがしました。 数学では 非ユークリッド幾何学の扱いにおけるガウスの記述、資料の欠落と算術の発見、ゼロの発見の Brahmagupta (598 -668 ?) の欠落は 残念に思われました。書籍など無くても大事な事実と思いますので、 大きく取り上げて欲しかった。 
この世界史年表で凄いことに気づいて興奮して後にしました。
ゼロ除算がこれらで基本的な関与があるからです。
まず、ゼロ除算は、ユークリッド幾何学の変更を求め、連続性のアリストテレスの世界観に反して、強力な不連続性の世界を示しています。ゼロ除算はアインシュタインの人生最大の関心事であったとされ、今でもなお、ゼロ除算とアインシュタインの相対性理論との関係が議論され、ブラックホールは 神がゼロで割ったところに存在するなどと 神秘的な問題を提供しているからです。
もちろん、Brahmaguptaは ゼロ除算を議論していて、その後、1300年に亘って、世界史で議論されてきて、 ニユートン力学でも基本的な問題を提起している。 当然、非ユークリッド幾何学とも関係していて、それらの空間とも違う全く新しい幾何学を提案している。このように考えると、検討中の Division by Zero Calculus の著書(出版契約済み)は 世界史上で大きな扱いになるだろうと発想して、大変興奮して、展示会を後にしました。
広く世界に意見を求め、この著書の出版計画を進めたい。 そのためにも途中経過も公表して行きたい。
ところで、 展示会の名称には 世界を変えた科学の書物展示会などと、 科学などの言葉を加える必要があるのではないでしょうか。 そうでなければ、 バイブル、法華経、コーラン、論語などが並ぶことになるのでは ないでしょうか。
尚、ゼロ除算については、一般向きには
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
で4年間を越えて解説を続けています。 
最後に素晴らしい展示会を企画され、そのために努力された人たちに 敬意と感謝の気持ちを表明したい。

以 上

再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
ここ2回に亘ってゼロ除算の解説を高校生、中学生向きに解説したので、今回はそれらの前に小学生などを意識して、割り算の意味とゼロ除算の意味を解説したい。
まず、割り算ですが、割り算を最初に考えたのは、アダムとイブで仲良くリンゴを2つに分けたことにあると楽しく表現した人がいます。 10個のリンゴを2人で仲良く分ければ、5個ずつ分けると丁度良いと考えますね。これは10割る2の意味で、割り算とは同じように分けることと考えられます。 10個のリンゴを3人で分ければ、3個ずつ分けると1個余りになると考えれば、10割る3は 3余り1です。 これらを 10/3 = 3 … 1 等と書き、 10を3で割ると商が3で余りは1と表現します。 少し、 難しく、50を13で割るとどうなるでしょうか。 少し考えて、50/13 = 3… 11 となります。 確かめるには、本当に分けた結果が50になるかを確認すればいいですね。 13が 3つあると 39で 11個残りと言っているので、確かに全体で50になるので、結果が正しいことが分かります。
割り算は難しいと 有名な言葉が有りますが、
― 割り算のできる人には、どんなことも難しくない。                     
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。                                                      
ベーダ・ヴェネラビリス(アイルランドの神学者)
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より 

簡単に考える方法があります。50に13が幾つあるかを考えているので、50引く13を繰り返して、 引けるまで、引き算を 繰り返します:
50-13=27、
27-13=14、
14-13=1
1から13は引けませんから、13は3個あるとなって、割り算の商が求まります。 この手順は何時でも決まった方法で必ず答えが得られますので、分かり易く実際、感情や直感、経験、
工夫などが苦手な計算機は割り算の商を計算するときにこのようにして自動的に計算しています。繰り返し引いていくので、繰り返して除いて行きますので、割り算は除算と呼ばれ、 西欧でも中世時代そのようにして計算していたというのです。 除算の名称は素晴らしいですね。
ゼロ除算とは、ゼロで割ることを考えることですから、 50割るゼロをやって見ましょう。
50-0=50
ですから、50はゼロを引いても引いたことにはならず、50/0=0 となるのではないでしょうか?
50のところは何でも結果はゼロだということになります。 ここをそうだと言ったら、1000年や2000年を越える新しい結果であるとなりますから、 大変です。 皆さんゼロで割ってはいけないと教えられてきていて、それが現代数学の定説です。
ところが、ゼロ除算は ある自然な意味で、何でもゼロで割ればゼロであるという数学を発見して ここ4年間研究を続けていますが このような新しい考えは、 数学の基礎と私たちの空間の考えを変える必要があり、大きな影響が有ります。
そこで、次の、中学、高校生ようの解説に進むことが出来ます。
そこに、小学1年生のお友達が出てきますから、面白いですね。
再生核研究所声明 417(2018.2.21):  ゼロ除算って何ですか - 中学生、高校生向き 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:

ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
前回の声明、再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
それ以前のこととして、今回はより基本的なことを述べたい。
12割る2は6、12割る3は4、12割る4は3、12割る6は2です。 12割る5は、商は2で余りは2で、12割る7は 商は1で余りは5です。これらを、普通、12/2=6,12/3=4,12/4=3,12/6=2 と分数で表現し、後半のように割り切れないときは 余りを表現したり、少数点以下割り算をどんどん 続けて行く場合などいろいろな考え方、表現があります。ここでは、簡単な場合として 自然数、1、2、3、4、、、、 の場合を考えましょう。
割り切れるときには、次の等式が成り立つことが大事です:
2X6=12, 3X4=12, 4X3=12, 2X6=12.
実際、12割る3を考えるとき、12の中に3が いくつ有るかと考え、3に何を掛けたら12になるかと考えるのではないでしょうか。ここには少し難しいところが有って、計算機などは決まった考えしかできないので、12から3を次々に引いて何回引けるかと考えれば、何時でも決まった考え方で割り算の商を求めることが出来ます。前半の考えは掛け算の逆を考えて、後半は引き算を何回やっての考え方ですから、前半の考えには感覚、予想などが必要であって、難しいですが、引き算の繰り返し(除いていく計算、除算)をただやればよいのですから、簡単です。計算機はこのようにして 割り算を実際行っています。
ゼロ除算とは、ゼロで割ることを考えるのですから、上記の場合、割る数、2,3,4,6のところでそれらがゼロだったらどうなるかと考えること、それがゼロ除算です。 ゼロで割ることを考えることです。
掛け算の逆で考える方法では、ゼロに何を掛けてもゼロですから、例えば、100/0は 0Xa=100 を探したいと考えても、0Xa =0 ですから、できない、存在しないということになってしまいます。そこで、現代数学では ゼロで割ってはいけないと教えられています。 数学界では2000年を超えた定説です。問題は、世の中には、分母がゼロになる公式が沢山現れて、分母がゼロになる場合が問題になります。
例えば、理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。(r^2は rの2乗の意味)。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば無限大か? 無限大とは何か、数か? その意味が不明であるという点である。
そもそも足し算、掛け算の基礎はブラーマグプタ(Brahmagupta598 – 668?インド数学者天文学者によって、628に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも大事な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな意義、影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0  0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の我々の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と神秘的な問題は、アインシュタインの人生最大の関心であったという言葉に象徴される。

物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、あるいは軽ろんじて、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたことは 実に奇妙、実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。ゼロ除算は至るところに見られると言っても良いほどです。
ゼロ除算を発見して議論を広く議論して間もなく、道脇愛羽さん当時6歳と緩まないネジで 有名なお父さん道脇裕氏たちは、3週間くらいで何でもゼロで割ればゼロであるとの驚嘆すべき発見に対して、理由を付けてそれは自明であると述べてきたのは 実に面白いことです。多くの専門家が、2、3年を越えても分からないと言っている経過を見ると本当に驚きです。
100/0 を100 から 0を何回引けるかと考えると、0を引いても100 は減りませんので、引いたとはいえず、減らすという意味で引ける回数はゼロ、したがって100/0=0 そして、余りが100であるとしました。 私たちは、割り算の意味を拡張して、ゼロ除算は拡張された分数の意味、割り算で 何でもゼロで割ればゼロであるという理論を数学的に確立させました。
1300年間も 創始者の考えを間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智への愛、良心から、熱い想いが湧いてくる。 ― 1300年も前に、創始者によって、0/0 = 0 とされてきたのに それは間違いだとして、現在も混乱しているのは、まずいのではないでしょうか?
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。高級編は ohttp://okmr.yamatoblog.net/ にあります。
以 上
再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答

ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。この意味が分かるまでは、 次には進めませんので、興味があれば、 次で解説されている最初の方を参照してください:
                                                                                                            
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
できない不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。

内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。
以 上

0 件のコメント:

コメントを投稿