Why Division by Zero is Undefined and 1 over 0 is not a number
2018/06/24 に公開
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明 424(2018.3.29): レオナルド・ダ・ヴィンチとゼロ除算
次のダ・ヴィンチの言葉を発見して、驚かされた:
ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
我々の周りにある偉大なことの中でも、無の存在が最も素晴らしい。その基本は時間的には過去と未来の間にあり、現在の何ものをも所有しないというところにある。この無は、全体に等しい部分、部分に等しい全体を持つ。分割できないものと割り切ることができるし、割っても掛けても、足しても引いても、同じ量になるのだ。
レオナルド・ダ・ヴィンチ。ルネッサンス期を代表する芸術家、画家、彫刻家、建築技師、設計士、兵器開発者、科学者、哲学者、解剖学者、動物学者、ファッションデザイナーその他広い分野で活躍し「万能の人(uomo universale:ウォモ・ウニヴェルサーレ)」と称えられる人物
そもそも西欧諸国が、アリストテレス以来、無や真空、ゼロを嫌い、ゼロの西欧諸国への導入は相当に遅れ、西欧へのアラビヤ数字の導入は レオナルド・フィボナッチ(1179年頃~1250年頃)によるとされているから、その遅れの大きさに驚かされる:
フィボナッチはイタリアのピサの数学者です。正確には「レオナルド・フィリオ・ボナッチ」といいますが、これがなまって「フィボナッチ」と呼ばれるようになったとされています。
彼は少年時代に父親について現在のアルジェリアに渡り、そこでアラビア数字を学びました。当時の神聖ローマ皇帝・フリードリヒ2世は科学と数学を重んじていて、フィボナッチは宮殿に呼ばれ皇帝にも謁見しました。後にはピサ共和国から表彰もされました。
フィボナッチはイタリアのピサの数学者です。正確には「レオナルド・フィリオ・ボナッチ」といいますが、これがなまって「フィボナッチ」と呼ばれるようになったとされています。
彼は少年時代に父親について現在のアルジェリアに渡り、そこでアラビア数字を学びました。当時の神聖ローマ皇帝・フリードリヒ2世は科学と数学を重んじていて、フィボナッチは宮殿に呼ばれ皇帝にも謁見しました。後にはピサ共和国から表彰もされました。
ローマ数字では「I, II, III, X, XV」のように文字を並べて記すため大きな数を扱うのには不便でした。対してアラビア数字はローマ数字に比べてとても分かりやすく、効率的で便利だったのです。そこでフィボナッチはアラビア数字を「算術の書」という書物にまとめ、母国に紹介しました。アラビア数字では0から9までの数字と位取り記数法が使われていますが、計算に使うにはとても便利だったために、ヨーロッパで広く受け入れられることになりました。(歴史上の数学者たち: レオナルド・フィボナッチ
historicalmathematicians.blogspot.com/2012/03/blog-post.html Traduzir esta página 02/03/2012 -)
ゼロや無に対する恐怖心、嫌疑観は現在でも欧米諸国の自然な心情と考えられる。ところが上記ダ・ヴィンチの言葉は 如何であろう。無について好ましいものとして真正面から捉えていることが分かる。ゼロ除算の研究をここ4年間して来て、驚嘆すべきこととして驚かされた。ゼロの意味、ゼロ除算の心を知っていたかのような言明である。
まず、上記で、無を、時間的に未来と過去の間に存在すると言っているので、無とはゼロのことであると解釈できる。ゼロとの捉え方は四則演算を考えているので、その解釈の適切性を述べている。足しても引いても変わらない。これはゼロの本質ではないか。さらに、凄いこと、掛けても割っても、ゼロと言っていると解釈でき、それはゼロ除算の最近の発見を意味している: 0/1 =1/0=0。- ゼロ除算を感覚的に捉えていたと解釈できる。ところが更に、凄いことを述べている。
この無は、全体に等しい部分、部分に等しい全体を持つ。これはゼロ除算の著書DIVISION BY ZERO CALCULUS(原案)に真正面から書いている我々の得た、達したゼロに対する認識そのものである:
{\bf Fruitful world}\index{fruitful world}
\medskip
For example, in very and very general partial differential equations, if the coefficients or terms are zero, we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we see the converse, we see that the zero world is a fruitful one and it means some vanishing world. Recall \index{Yamane phenomena}Yamane phenomena, the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show some changes as in the Yamane phenomena.
\medskip
{\bf From $0$ to $0$; $0$ means all and all are $0$}
\medskip
As we see from our life figure, a story starts from the zero and ends to the zero. This will mean that $0$ means all and all are $0$, in a sense. The zero is a mother of all.
\medskip
その意味は深い。我々はゼロの意味をいろいろと捉え考え、ゼロとはさらに 基準を表すとか、不可能性を示すとか、無限遠点の反映であるとか、ゼロの2重性とかを述べている。ゼロと無限の関係をも述べている。ダ・ヴィンチの鋭い世界観に対する境地に驚嘆している。
以 上
*057 Pinelas,S./Caraballo,T./Kloeden,P./Graef,J.(eds.): Differential and Difference Equations with Applications: ICDDEA, Amadora, 2017. (Springer Proceedings in Mathematics and Statistics, Vol. 230) May 2018 587 pp.
再生核研究所声明343(2017.1.10)オイラーとアインシュタイン
世界史に大きな影響を与えた人物と業績について
再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。
オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質はエネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:
Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).
今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上
再生核研究所声明432(2018.7.15):無限に広がった平面を捉える4つの考え方
無限に広がった平面の概念は 2200年以上前にユークリッドによって捉えられ、ユークリッド幾何学が体系づけられた。それはユークリッド原論と呼ばれる世界最初の学術書とされ、聖書とともに世界史上の超古典である。無限に広がった空間とは砂漠の広大な広がりから生まれた概念とされるが、特徴は平行線の公理、すなわち、交わらない2直線、平行線の存在する空間で、それは三角形の内角の和が180度、平角をなすとも表現される。ユークリッドの壮大な構想を振り返りたい。しかしながら、この事実は既に疑いをもたれ、平行線の公理を避ける様に原論は構成されているという。ともあれこの空間の考えは4つ述べる無限に広がった平面に対する発想の基本の第1のものである。
ユークリッドの不安は2000年を経て疑われ、3人の巨人によって 非ユークリッド幾何学が発見された。その物語はあたらしい幾何学として述べられ 感銘深い世界史上の事件と捉えられる。平行線の存在が 否定される幾何学が現れてきた。同時に数学とは何かと問われ、絶対的な真理としての数学から、数学とは公理系から出発して論理的に展開される理論体系であって、真偽や価値とは無関係の関係からなる理論体系であると変化した。初期には抽象的な変な世界の数学ではないだろうかと考えられたが、現在ではユークリッド幾何学ではない、非ユークリッドの幾何学が展開されていると考えられる。ちょうど数学の基礎を与える解析関数論の世界では、複素平面上に球面を載せて立体射影の対応で平面を写せば、直線を円の1種と見なせば、平面上の円も直線も立体射影で球面上の円に写るという美しい対応関係が成り立つ。この対応でユークリッド平面全体は球面上の北極を除いた全体と1対1の対応をすることが簡単に分る。直線のいずれの方向でも無限の彼方に行けば、北極点に対応する点に到達する様を見ることができる。そこで平面の無限の彼方を想念上に存在するものとして無限遠点と名付けて平面に無限遠点を加えて拡張平面と考える。すると拡張平面は全体として球面全体と1対1に対応して美しい世界が現れる。立体射影で円は円に対応し、写像は交わる角を不変に保つなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を一方向に行けば円をくるくる回るように、無限遠点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。そう発想できる。
この拡張平面の考え方が第2の考え方である。平面のすべての方向の先に無限遠点が存在して球面上で見れば その想像上の点は北極に対応するという。
ところが 2014年2月2日に発見されたゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性をもって、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
これが第3の無限平面の捉え方である。強力な不連続性のある空間。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へ に写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
第2の型では もし、x軸の正の方向にどんどん進んで行けば、やがて無限遠点に達しは それは負の無限と一致しているから、無限遠点を経由して戻って来るということになる。しかしながら、第3の型では、負の方向とは関係なく、無限の彼方に行けば突然原点に戻るという世界になる。第4の型では、正の無限の彼方に行けば、それは原点に連続的に対応しているから、ゼロと無限は一致しているから、xの正軸は閉曲線に写って連続的に閉じていて、負軸も同等に閉曲線に写って連続的に閉じている。
現在、第3と第4の何れが拡張された全平面のモデルとして適切であるかを問題にしている。 如何であろうか。
以 上
再生核研究所声明 451(2018.9.14): みんなの数学、大衆の数学 ― 和算の風土を取り戻そう
小林龍彦先生の解説:
○ 和算入門-
○ 和算入門-
小林 龍彦 前橋工科大学名誉教授
を毎月楽しく拝見している。 江戸時代の文化的な風情が感じられて堪らなく愛おしい数学と数学の愛好者の世界が感じられる。 江戸時代の数学の文化の様子は 世界的に見ても特徴的でまれなものではないだろうか。 背景には永く続いた平和があり、 ある種の十分なゆとりの表れと言えるのではないだろうか。 人間、やらなければならないことが少なくなれば、数学などをやるほかに やることがなくなることは 相当に真実ではないだろうか。 実際、数学のように 実際的には、何の役にも立たないように思われる抽象的な世界に浸っていられるのは 十分な余裕の表れではないだろうか。 仕事や実益的な利益に結び付かないだけに、好きなことを考えるという要素が強い。 - ここであるが、逆に、人間の一面として 結構本質的な、競争心や優越感を満足させるための数学は 歴史的にも数学を進めてきた原動力になっていることは 否めない。
現代でも、有名なまたは難しい問題が解けたとか、数学者の才能が強調されるのが 数学界の話題の中心になりがちである。 - 確かに数学界には想像もできないような才能の持ち主が多い。 最も優秀な数学者たちが、 人類の名誉にかけて挑戦しているのは 結構多いのでは ないだろうか。― 不可能、そんなことは、人類の名誉にかけて許せない、と感じた。
戦場でも数学をやっていた数学者の心情は、そこはどうなっているかとの、真理の追究の激しい情念 ではないだろうか。
それで、現代は 数学が難しく、高度化してしまい、お互いにお互いの研究状況ばかりではなく、研究課題の意味づけや位置づけさえ想像すらできないような形相が多いといえるのではないだろうか。さらに 評価、評価の世界的な流れの中で、研究は高度化、細分化し、繊細で、末梢的な形相も表れているといえるのではないだろうか。 大事な動機と目標を見失って、進んできた先をただ夢中で発展させている研究課題が多いと言える。 それで、その関係専門家でさえ、興味を失い、まして研究の教育や社会的への影響や貢献の意識さえ薄くしているのでは ないだろうか。
研究と教育の乖離、研究と社会の乖離、数学が大衆と乖離してしまい、数学の文化的な享受の要素は 数学界全体として 驚くほどに小さい状況ではないだろうか。 数学の研究成果などは 一般の話題になることはほとんどなく、初等数学のカリキュラムの研究による変更なども殆どなく、基礎数学は既に確立して 変わりようがないように考えられているのではないだろうか。
江戸時代、趣味のように和算に取り組んでいた世相が うらやましく感じられる。 多くの人が美しい数学の結果を発見して交流し、楽しむ社会である。
このような観点から、初等数学である、 ゼロで割ることの 新しい数学、ゼロ除算は 新奇な世界で、みんなで新しい結果を発見でき、大いに楽しめる数学として 良い分野、課題ではないだろうか。 みんなで楽しめる数学の関心を促したい。小林龍彦先生の和算の解説と一緒に同じサイトで解説を続けているので参照して頂きたい。
興味・関心を起こさせる例として 勾配に関する話題を 声明431 から取り挙げたい:
今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。 発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?
発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。
原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会、代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。―――
ゼロ除算は、多くの場面に現れているので、いろいろ探して、お互いに楽しめれば幸いです。発見されたら、多くの具体例のように登録して、記録に残していきたい。良いものは当然、論文に載せたり、著書に採用したい。 素人でも数学の研究に参加できる稀なる課題であり、稀なる機会ではないだろうか。皆さんも新しい発見は、如何でしょうか。 公表のいろいろな具体例を参照して下さい。驚く程近くに、簡単にゼロ除算が現れていることを知るでしょう。とても考えられないと思われてきたことが、実は至る所に現れていたと言える。それらは、さらに凄い世界に通じている。
以 上
Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.7, (2018), Issue 2, pp.44-49 APPLICATIONS OF THE DIVISION BY ZERO CALCULUS TO WASAN GEOMETRY HIROSHI OKUMURA AND SABUROU SAITOH
再生核研究所声明 411(2018.02.02): ゼロ除算発見4周年を迎えて
ゼロ除算100/0=0を発見して、4周年を迎える。 相当夢中でひたすらに その真相を求めてきたが、一応の全貌が見渡せ、その基礎と展開、相当先も展望できる状況になった。論文や日本数学会、全体講演者として招待された大きな国際会議などでも発表、著書原案154ページも纏め(http://okmr.yamatoblog.net/)基礎はしっかりと確立していると考える。数学の基礎はすっかり当たり前で、具体例は700件を超え、初等数学全般への影響は思いもよらない程に甚大であると考える: 空間、初等幾何学は ユークリッド以来の基本的な変更で、無限の彼方や無限が絡む数学は全般的な修正が求められる。何とユークリッドの平行線の公理は成り立たず、すべての直線は原点を通るというが我々の数学、世界であった。y軸の勾配はゼロであり、\tan(\pi/2) =0 である。 初等数学全般の修正が求められている。
数学は、人間を超えたしっかりとした論理で組み立てられており、数学が確立しているのに今でもおかしな議論が世に横行し、世の常識が間違っているにも拘わらず、論文発表や研究がおかしな方向で行われているのは 誠に奇妙な現象であると言える。ゼロ除算から見ると数学は相当おかしく、年々間違った数学やおかしな数学が教育されている現状を思うと、研究者として良心の呵責さえ覚える。
複素解析学では、無限遠点はゼロで表されること、円の中心の鏡像は無限遠点では なくて中心自身であること、ローラン展開は孤立特異点で意味のある、有限確定値を取ることなど、基本的な間違いが存在する。微分方程式などは欠陥だらけで、誠に恥ずかしい教科書であふれていると言える。 超古典的な高木貞治氏の解析概論にも確かな欠陥が出てきた。勾配や曲率、ローラン展開、コーシーの平均値定理さえ進化できる。
ゼロ除算の歴史は、数学界の避けられない世界史上の汚点に成るばかりか、人類の愚かさの典型的な事実として、世界史上に記録されるだろう。この自覚によって、人類は大きく進化できるのではないだろうか。
そこで、我々は、これらの認知、真相の究明によって、数学界の汚点を解消、世界の文化への貢献を期待したい。
ゼロ除算の真相を明らかにして、基礎数学全般の修正を行い、ここから、人類への教育を進め、世界に貢献することを願っている。
ゼロ除算の発展には 世界史がかかっており、数学界の、社会への対応をも 世界史は見ていると感じられる。 恥の上塗りは世に多いが、数学界がそのような汚点を繰り返さないように願っている。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば神の意志を知りたいということである。そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。
4周年、思えば、世の理解の遅れも反映して、大丈夫か、大丈夫かと自らに問い、ゼロ除算の発展よりも基礎に、基礎にと向かい、基礎固めに集中してきたと言える。それで、著書原案ができたことは、楽しく充実した時代であったと喜びに満ちて回想される。
以 上
2018.9.17. 展示書籍などを拝見させて頂きました。大変賑わっていて関心の大きさが感じられました。時間の関係で じっくり、詳しくとは行きませんでしたが、全体の案内(知の連鎖ゾーン)で、初期、初めにアリストテレスとユークリッドが 在って、中間くらいにニュートン、最後がアインシュタインで 世界史を総攬する想いがしました。 数学では 非ユークリッド幾何学の扱いにおけるガウスの記述、資料の欠落と算術の発見、ゼロの発見の Brahmagupta (598 -668 ?) の欠落は 残念に思われました。書籍など無くても大事な事実と思いますので、 大きく取り上げて欲しかった。 この世界史年表で凄いことに気づいて興奮して後にしました。
ゼロ除算がこれらで基本的な関与があるからです。
まず、ゼロ除算は、ユークリッド幾何学の変更を求め、連続性のアリストテレスの世界観に反して、強力な不連続性の世界を示しているからです。 アインシュタインは ゼロ除算が人生の最大の関心事で、今でもなお、ゼロ除算とアインシュタインの相対性理論との関係が議論され、ブラックホールは 神がゼロで割ったところに存在するなどと 神秘的な問題を提供しているからです。
もちろん、Brahmaguptaは ゼロ除算を議論していて、その後、1300年に亘って、世界史で議論されてきて、 ニユートン力学でも基本的な問題を提起している。 当然、非ユークリッド幾何学とも関係していて、それらの空間とも違う新しい幾何学を提案している。 このように考えると、検討中の Division by Zero Calculus の著書(出版契約済み)は 世界史上で大きな扱いになるだろうと発想して、大変興奮して、展示会を後にしました。
広く世界に意見を求め、この著書の出版計画を進めたい。 途中経過も公表して行きたい。
最後に素晴らしい展示会を企画され、そのために努力された人たちに 感謝の気持ちを表明したい。
0 件のコメント:
コメントを投稿