ロスジェネ女子の憂鬱
ロスジェネという言葉はすでに過去のものといったイメージがあります。ロスジェネは現在の35〜45歳くらいの世代で、一般的には不況で就職ができず、単純作業のアルバイトを転々とすることによってスキルアップにも繋がらず、収入も上がらないため結婚もほど遠いといった世代の人を指すようです。
男性側ばかりが語られる
そうしたロスジェネについて語られる時のひとつの罠と言えるものが、男性側の視点ばかりが語られることでしょう。収入が低いので、恋人と結婚したくてもできないというような具合です。しかしながら、ロスジェネには男性ばかりではなく女性も存在します。
失われた世代の本音
雨宮処凛による『非正規・単身・アラフォー女性 「失われた世代」の絶望と希望 』(光文社新書)は、自らも女性のロスジェネ世代と言える筆者による体験的ノンフィクションというべきものです。もちろん本人の体験ばかりではなく、同世代の女性に対するインタビューも敢行されています。同じような立場であるからこそわかる言葉、聞ける言葉というのもそこにはあるかもしれません。
何が問題なのか
40代、いわゆるアラフォーの独身女性たちに襲いかかるものとはなんでしょうか。まずはほとんどの人が不安定な非正規雇用の立場にあります。本書では半分と規定されていますが、実際はそれよりも多いのではないでしょうか。さらに、そこには親の介護といった問題も立ちはだかってきます。生きづらさがそこにはあると言えるでしょう。しかしながら生きていかなければいけない。それでも、という問題がそこにあるのです。これは必ずしも自己責任と言い切れるのでしょうか。もっと大きな問題、さらには取り返しのつかない社会政策の問題が浮かび上がってくると言えるでしょう。
雨宮処凛 光文社 2018-05-16
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
Matrices and Division by Zero z/0 = 0
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:
ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。
以 上
Matrices and Division by Zero z/0 = 0
再生核研究所声明432(2018.7.15):無限に広がった平面を捉える4つの考え方
無限に広がった平面の概念は 2200年以上前にユークリッドによって捉えられ、ユークリッド幾何学が体系づけられた。それはユークリッド原論と呼ばれる世界最初の学術書とされ、聖書とともに世界史上の超古典である。無限に広がった空間とは砂漠の広大な広がりから生まれた概念とされるが、特徴は平行線の公理、すなわち、交わらない2直線、平行線の存在する空間で、それは三角形の内角の和が180度、平角をなすとも表現される。ユークリッドの壮大な構想を振り返りたい。しかしながら、この事実は既に疑いをもたれ、平行線の公理を避ける様に原論は構成されているという。ともあれこの空間の考えは4つ述べる無限に広がった平面に対する発想の基本の第1のものである。
ユークリッドの不安は2000年を経て疑われ、3人の巨人によって 非ユークリッド幾何学が発見された。その物語はあたらしい幾何学として述べられ 感銘深い世界史上の事件と捉えられる。平行線の存在が 否定される幾何学が現れてきた。同時に数学とは何かと問われ、絶対的な真理としての数学から、数学とは公理系から出発して論理的に展開される理論体系であって、真偽や価値とは無関係の関係からなる理論体系であると変化した。初期には抽象的な変な世界の数学ではないだろうかと考えられたが、現在ではユークリッド幾何学ではない、非ユークリッドの幾何学が展開されていると考えられる。ちょうど数学の基礎を与える解析関数論の世界では、複素平面上に球面を載せて立体射影の対応で平面を写せば、直線を円の1種と見なせば、平面上の円も直線も立体射影で球面上の円に写るという美しい対応関係が成り立つ。この対応でユークリッド平面全体は球面上の北極を除いた全体と1対1の対応をすることが簡単に分る。直線のいずれの方向でも無限の彼方に行けば、北極点に対応する点に到達する様を見ることができる。そこで平面の無限の彼方を想念上に存在するものとして無限遠点と名付けて平面に無限遠点を加えて拡張平面と考える。すると拡張平面は全体として球面全体と1対1に対応して美しい世界が現れる。立体射影で円は円に対応し、写像は交わる角を不変に保つなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を一方向に行けば円をくるくる回るように、無限遠点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。そう発想できる。
この拡張平面の考え方が第2の考え方である。平面のすべての方向の先に無限遠点が存在して球面上で見れば その想像上の点は北極に対応するという。
ところが 2014年2月2日に発見されたゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性をもって、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
これが第3の無限平面の捉え方である。強力な不連続性のある空間。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へ に写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
第2の型では もし、x軸の正の方向にどんどん進んで行けば、やがて無限遠点に達しは それは負の無限と一致しているから、無限遠点を経由して戻って来るということになる。しかしながら、第3の型では、負の方向とは関係なく、無限の彼方に行けば突然原点に戻るという世界になる。第4の型では、正の無限の彼方に行けば、それは原点に連続的に対応しているから、ゼロと無限は一致しているから、xの正軸は閉曲線に写って連続的に閉じていて、負軸も同等に閉曲線に写って連続的に閉じている。
現在、第3と第4の何れが拡張された全平面のモデルとして適切であるかを問題にしている。 如何であろうか。
以 上
再生核研究所声明 430(2018.7.13): 古典的なリーマン球面に代わるHorn Torusの出現について
ロシアの若き研究者 V. Puha 氏が古典的なリーマン球面に代わる空間のモデルとしてHorn Torusを提案して来たのは 6月16日だから新世界が現れてまだ1カ月も経っていないことになる。ちょうど論文原稿の基ができたところである。ここ1カ月間声明も珍しく休んでいた事実からしても 異常に集中して興奮していた状況が良く分かる。論文も英文声明も発表するつもりであるから、ここでは一般向きに心情面での解説を行って置きたい。これは情念に突き動かされていると言える。書かなければならず、書きたい情念である。
そもそも我々の空間、平面の認識はユークリッドに始まり、現代人は一様に平面の認識を抱いていると考えられる。限りなく広がる平面と言えば、多くの人の考えは同じではないだろうか。机の上に一枚の例えばA4版の紙が置かれていれば、それを4方向に限りなく伸ばして行った平面を想像するだろう。限りなく伸ばす、それが問題である。そして、その平面上でユークリッド幾何学を考えてきた。それは2200年以上前にユークリッドが考えた空間である。その時の有名な事実は、三角形の内角の和は180度、平角である。これは平行線の一意存在性を保証するユークリッドの公理とも呼ばれている。この公理は根本的に問われ、幾何学とは何か、数学とは何かの問題を提起し、2000年を経て、平行線の公理を満たさない非ユークリッド幾何学が出現した。非ユークリッド幾何学の出現の物語は極めて感銘させるものである。便利な時代 幾らでも関係情報は手に入るから、折に触れて学んで置きたい。如何に新しい概念を得ることが困難であるかを良く示している。本当の、真の創造である。新しい概念を得る困難さである。
ところがその非ユークリッド幾何学であるが、ユークリッド幾何学に馴染んできた人々がユークリッド幾何学でない幾何学と言われれば、そんなものは想念上のもので意味がないのではないだろうかと 多くの人は 初期には発想したと考えられる。ところがしばらくすると、非ユークリッド幾何学は当たり前で、現代数学の基礎に至る所に現われ、ユークリッド幾何学などは 当たり前で、数学の実体としては 非ユークリッド幾何学が主流になっていることは 現在では相当に常識である。 ― ゼロ除算もそうなるだろう。
数学を支える解析関数の理論の基礎は、楕円型非ユークリッド幾何学で、xy平面上に置かれた球面への立体射影で、平面は球面上に1対1に写され、平面上の異なる平行線は無限遠点と呼ばれる球面上の北極点に対応する 想像上の点で交わると考えられる。平行線は無限の彼方で交わっていると発想する。立体射影の解説を参照して頂きたい。北極点と無限遠点の対応である。すると平行線は無限遠点で交わるとなって、ユークリッドの公理は成り立たない。 無限遠点を加えた拡張平面と球面は全体が1対1に全体として対応するから、極めて美しい対応関係である。立体射影は直線を円の1種と見なせば円は円に対応し、写像は交わる角を不変にするなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。 円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を1方向に行けば円をくるくる回るように、無限点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。
ところが 2014年2月2日発見したゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性を持って、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へに写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
数学的にさらに詳しく述べるのは適当でないと考える。 ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
以 上
0 件のコメント:
コメントを投稿