2016年6月1日水曜日

除法(英: division)

NEW !
テーマ:
除法(じょほう、英: division)とは、乗法の逆演算であり四則演算のひとつに数えられる二項演算の一種である。除算、割り算とも呼ばれる。
除法は ÷ や /, % といった記号を用いて表される。除算する 2 つの数のうち一方の項を被除数 (英: dividend) と呼び、他方を除数 (英: divisor) と呼ぶ。有理数の除法について、その演算結果は被除数と除数の比を与え、分数を用いて表すことができる。このとき被除数は分子 (英: numerator)、除数は分母 (英: denominator) に対応する。被除数と除数は、被除数の右側に除数を置いて以下のように表現される。
被除数 ÷ 除数
除算は商 (英: quotient) と剰余 (英: remainder) の 2 つの数を与え、商と除数の積に剰余を足したものは元の被除数に等しい。
商 × 除数 + 剰余 = 被除数
剰余は余りとも呼ばれ、除算によって「割り切れない」部分を表す。剰余が 0 である場合、「被除数は除数を割り切れる」と表現され、このとき商と除数の積は被除数に等しい。剰余を具体的に決定する方法にはいくつかあるが、自然数の除法については、剰余は除数より小さくなるように取られる。たとえば、13 を 4 で割った余りは 1、商は 3 となる。これらの商および剰余を求める最も原始的な方法は、引けるだけ引き算を行うことである。つまり、13 を 4 で割る例では、13 から 4 を 1 回ずつ引いていき(13 - 4 = 9, 9 - 4 = 5, 5 - 4 = 1 < 4)、引かれる数が 4 より小さくなるまで引き算を行ったら、その結果を剰余、引き算した回数を商とする。これは自然数の乗法を足し算によって行うことと逆の関係にある。
剰余を与える演算に % などの記号を用いる場合がある。
剰余 = 被除数 % 除数
除数が 0 である場合、除数と商の積は必ず 0 になるため商を一意に定めることができない。従ってそのような数 0 を除数とする除法の商は未定義となる(ゼロ除算を参照)。
有理数やそれを拡張した実数、複素数における除法では、整数や自然数の除法と異なり剰余は用いられず、
商 × 除数 = 被除数
という関係が除数が 0 の場合を除いて常に成り立つ。この関係は次のようにも表すことができる。
被除数 ÷ 除数 = 商
実数などにおける定義から離れると、除法は乗法を持つ代数的構造について「乗法の逆元を掛けること」として一般化することができる。一般の乗法は交換法則が必ずしも成り立たないため、除法も左右 2 通り考えられる。
目次 [非表示]
1 整数の除法
2 有理数の除法
3 実数の除法
4 複素数の除法
5 0で割ること
6 ユークリッド除法と除算アルゴリズム
7 等分除と包含除
8 伝承
9 関連項目
10 注記
整数の除法[編集]
演算の結果 表・話・編・歴
加法 (+)
加法因子 + 加法因子 = 和
被加数 + 加数 = 和
減法 (-)
被減数 - 減数 = 差
乗法 (×)
因数 × 因数 = 積
被乗数 × 乗数 = 積
倍率 × 被乗数 = 積
除法 (÷)
被除数 ÷ 除数 = 商
被約数 ÷ 約数 = 商
実 ÷ 法 = 商
分子
分母
= 商
剰余算 (mod)
被除数 mod 除数 = 剰余
被除数 mod 法 = 剰余

底冪指数 = 冪
冪根 (√)
次数√被開方数 = 冪根
対数 (log)
log底(真数) = 対数
整数 m と n に対して、
m = qn
を満たす整数 q が唯一つ定まるとき、m ÷ n = q によって除算を定める。m は被除数(ひじょすう、英: dividend)あるいは実(じつ)と呼ばれ、n は除数(じょすう、英: divisor)あるいは法(ほう、英: modulus)と呼ばれる。また q は m を n で割った商(しょう、英: quotient)と呼ばれる。商 q は他に「m の n を法とする商」「法 n に関する商 (英: quotient modulo n)」 などとも言う。 またこのとき、m は n で整除(せいじょ)される、割り切れる(わりきれる、英: divisible)あるいは n は m を整除する、割り切るなどと表現される。このことはしばしば記号的に n | m と書き表される。 除数 n が 0 である場合を考えると、除数 0 と任意の整数 q の積は 0 となり、被除数 m が 0 なら任意の整数 q が方程式を満たすため、商は一意に定まらない。同様に被除数 m が 0 以外の場合にはどのような整数 q も方程式を満たさないため、商は定まらない。
整数の範囲では上述のような整数 q が定まる保証はなく、たとえば被除数 m が 7 の場合を考えると除数 n が 1, 7, -1, -7 のいずれかでない限り商 q は整数の範囲で定まらない。整数の範囲で商が必ず定まるようにするには、剰余(じょうよ、英: remainder, residue)を導入して除法を拡張する必要がある。つまり、方程式
m = qn + r
を満たすような q, r をそれぞれ商と剰余として与える。このような方程式を満たす整数 q, r は複数存在するが(たとえばある q, r に対して q - 1 と n + r の組は同様に上記の方程式を満たす)、剰余 r の取り得る値に制限を与えることで一意に商 q と剰余 r の組を定めることができる。よく用いられる方法は剰余 r を除数 n より絶対値が小さな非負の数と定めることである。このような除法はユークリッド除法と呼ばれる。
m = qn + r かつ 0 ≤ r < |n|
これは、感覚的には被除数から除数を引けるだけ引いた残りを剰余と定めているということである。こうして定められる剰余はしばしば「m の n を法とする剰余」「m の法 n に関する剰余 (英: residue modulo "n") 」などと言い表される。 剰余 r が 0 でないことはしばしば「m は n で割り切れない」と表現され、記号的に n ł m と表される。 ユークリッド除法による計算例は以下の通りである。以下では除数を 4, -4, 被除数を 22, -22 としている。
0 ≤ r < |n|
22 = 5 × 4 + 2:商 5, 剰余 2
22 = (-5) × (-4) + 2:商 -5, 剰余 2
-22 = (-6) × 4 + 2:商 -6, 剰余 2
-22 = 6 × (-4) + 2:商 6, 剰余 2
他の剰余に対する制限の方法として、剰余の絶対値が最小となるように商を定める方法がある。この方法では、

|n|
2
< r ≤
|n|
2
あるいは

|n|
2
≤ r <
|n|
2
の範囲に剰余 r が含まれる。この場合、ユークリッド除法と異なり r は負の値を取り得る。このようにして定められる剰余を絶対値最小剰余 (least absolute remainder) と呼ぶ。 絶対値最小剰余を用いる場合の計算例は以下の通りである。以下では除数を 4, -4, 被除数を 22, -22 としている。

|n|
2
< r ≤
|n|
2
22 = 5 × 4 + 2:商 5, 剰余 2
22 = (-5) × (-4) + 2:商 -5, 剰余 2
-22 = (-6) × 4 + 2:商 -6, 剰余 2
-22 = 6 × (-4) + 2:商 6, 剰余 2

|n|
2
≤ r <
|n|
2
22 = 6 × 4 - 2:商 6, 剰余 -2
22 = (-6) × (-4) - 2:商 -6, 剰余 -2
-22 = (-5) × 4 - 2:商 -5, 剰余 -2
-22 = 5 × (-4) - 2:商 5, 剰余 -2
いずれの方法であっても、除数 n が 0 の場合、剰余 r は 0 でなければならず、被除数 m がどのような数であっても商 q を一意に定めることはできない。 絶対値最小剰余とユークリッド除法によって定められる最小非負剰余、あるいは別の方法のいずれを用いるかは自由であり、与えられる剰余がそのいずれかであるかは予め決められた規約に従う。この規約は、計算する対象や計算機の機種、あるいはプログラミング言語により、まちまちである。簡単な分析とサーベイが "Division and Modulus for Computer Scientists" という文献にまとめられている[1]。
有理数の除法[編集]
整数の除法では考えている数(自然数もしくは整数)の範囲内で商を取り直し剰余を定義することにより、除法をその数の範囲全体で定義することができることを述べた。しかしよく知られているように、数の範囲を有理数まで拡張し、商のとり方に有理数を許すことにより、剰余の概念は取り除かれ、有理数の全体で四則演算が自由に行えるようになる。
任意の被除数 a と 0 でない除数が b について、それらの除算は有理数 c を唯一つ与える。
a \div b = c.
この有理数 c は
c \times b = b \times c = a
を満たす。また、除法は除数の逆数の乗算に置き換えることができる。
a \div b = a \times \frac{1}{b}.
従って除算および乗算の順序は入れ替えることができる。
\begin{align}
(a \div b) \times c
&= \left(a \times \frac{1}{b}\right) \times c
= (a \times c) \times \frac{1}{b}
= (a \times c) \div b, \\
(a \div b) \div c
&= \left(a \times \frac{1}{b}\right) \times \frac{1}{c}
= \left(a \times \frac{1}{c}\right) \times \frac{1}{b}
= (a \div c) \div b.
\end{align}
また、2 つの除算は乗法を用いてまとめることができる。
(a \div b) \div c = a \div (b \times c).
しかし、除数と被除数を入れ替えることはできない。
a \div b \ne b \div a,
(a \div b) \div c \ne a \div (b \div c).
2つ目の例のように括弧の位置を変えると計算結果が変わってしまうので、
a \div b \div c
と書かれた場合には特別な解釈を与える必要がある。一般的には左側の演算が優先され、下に示す右辺の意味に解釈される。
a \div b \div c = (a \div b) \div c.
有理数の除法について、除数を被除数に対して分配することができる。
(a + b) \div c = a \div c + b \div c
ただし被除数を除数に対して分配することはできない。
a \div (b + c) \ne a \div b + a \div c
有理数の除算の結果は分数を用いて表すことができる。
a \div b = \frac{a}{b}.
ある有理数に対応する分数の表し方は無数に存在する。たとえば 0 でない有理数 c を用いて、
a \div b = \frac{ac}{bc} = \frac{\frac{a}{c}}{\frac{b}{c}}
と表してもよい。 また有理数は分母と分子がともに整数である分数を用いて表すことができる。2 つの有理数 a, b をそれぞれ整数 p, q, r, s を用いて分数表記する。
a=\frac{p}{q},~ b=\frac{r}{s}
すると、それらの除算は次のように計算することができる。
\frac{p}{q} \div \frac{r}{s} = \frac{p}{q} \times \frac{s}{r} = \frac{p \times s}{q \times r} = \frac{ps}{qr}.
この表示から明らかなように有理数を有理数で割った商はまた有理数である。あるいは次のように計算してもよい。
\frac{p}{q} \div \frac{r}{s} = \frac{p \div r}{q \div s} = \frac{\frac{p}{r}}{\frac{q}{s}}.
このような意味で四則演算が自由に行える集合の抽象化として体の概念が現れる。すなわち、有理数の全体が作る集合 Q は体である。
実数の除法[編集]
実数は有理数の極限として表され、それによって有理数の演算から実数の演算が矛盾なく定義される。すなわち、任意の実数 x, y (y ≠ 0) に対し xn → x, yn → y (n → ∞) を満たす有理数の列 {xn}n ∈ N, {yn}n ∈ N(例えば、x, y の小数表示を第 n 桁までで打ち切ったものを xn, yn とするような数列)が与えられたとき
x/y := \lim_{n\to\infty}x_n/y_n
と定めると、この値は極限値が x, y である限りにおいて数列のとり方によらずに一定の値をとる。これを実数の商として定めるのである。
複素数の除法[編集]
実数の除法を用いれば複素数の除法が、被除数が 0 の場合を除いた任意の 2 つの複素数について定義できる。 2 つの複素数 z, w について、w の共役複素数 w を用いれば、複素数の除法 z/w は次のように計算できる(ただし除数 w は 0 でないとする)。
\frac{z}{w} = \frac{z}{w}\frac{\overline{w}}{\overline{w}} = \frac{z\overline{w}}{\left|w\right|^2}.
また、複素数 z, w の実部と虚部を 4 つの実数 Re z, Im z, Re w, Im w を用いて z = Re z + i Im z, w = Re w + i Im w と表せば、複素数の除法 z/w は次のように表せる。
\frac{z}{w}
= \frac{\operatorname{Re}z + i\operatorname{Im}z}{\operatorname{Re}w + i\operatorname{Im}w}
= \frac{\operatorname{Re}z\operatorname{Re}w + \operatorname{Im}z\operatorname{Im}w}{(\operatorname{Re}w)^2 + (\operatorname{Im}w)^2}
+ i\,\frac{\operatorname{Re}z\operatorname{Im}w - \operatorname{Im}z\operatorname{Re}w}{(\operatorname{Re}w)^2 + (\operatorname{Im}w)^2}
.
極形式では
\frac{z}{w}=\frac{|z|e^{i\arg z}}{|w|e^{i\arg w}}=\frac{|z|}{|w|}e^{i(\arg z-\arg w)}
と書ける。やはり |w| = 0 つまり w = 0 のところでは定義できない。
0で割ること[編集]
詳細は「ゼロ除算」を参照
代数的には、除法は乗法の逆の演算として定義される。つまり a を b で割るという除法は
a \div b = x \iff a = b \times x
を満たす唯一つの x を与える演算でなければならない。ここで、唯一つというのは簡約律
bx = by \Rightarrow x=y
が成立するということを意味する。この簡約律が成立しないということは、bx = by という条件だけからは x = y という情報を得たことにはならないということであり、そのような条件下で強いて除法を定義したとしても益が無いのである。
実数の乗法において、簡約が不能な一つの特徴的な例として b = 0 である場合、つまり「0 で割る」という操作を挙げることができる。実際、b = 0 であるとき a = bx によって除法 a ÷ b を定めようとすると、もちろん a = 0 である場合に限られるが、いかなる x, y についても 0x = 0 = 0y が成立してしまって x の値は定まらない。無論、a ≠ 0 ならば a = 0x なる x は存在せず a ÷ b は定義不能である。つまり、実数の持つ代数的な構造と 0 による除算は両立しない。https://ja.wikipedia.org/wiki/%E9%99%A4%E6%B3%95


再生核研究所声明296(2016.05.06)   ゼロ除算の混乱

ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:

再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める

我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。

以 上


考えてはいけないことが、考えられるようになった。
説明できないことが説明できることになった。


再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥

(山田正人さん:散歩しながら、情念が湧きました:2016.1.17.10時ころ 散歩中)

西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ようやく四則演算の法則が確立された。ゼロで割れば、何時でもゼロになるという美しい関係が発見された。ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。
しかしながら、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論にゼロ除算は公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。そればかりではなく、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。
そこで、この矛盾、ゼロ除算の解釈による矛盾に アインシュタインが深刻に悩んだものと思考される。実際 アインシュタインは 数学不信を公然と 述べている:

What does Einstein mean when he says, "I don't believe in math"?
https://www.quora.com/What-does-Einstein-mean-when-he-says-I-dont-believe-in-math
アインシュタインの数学不信の主因は アインシュタインが 難解で抽象的な数学の理論に嫌気が差したものの ゼロ除算の間違った数学のためである と考えられる。(次のような記事が見られるが、アインシュタインが 逆に間違いをおかしたのかは 大いに気になる:Sunday, 20 May 2012
Einstein's Only Mistake: Division by Zero)

簡単なゼロ除算について 1300年を超える過ちは、数学界の歴史的な汚点であり、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だに続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと思考される。
以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題

Googleサイトなどを参照すると ゼロ除算の話題は 膨大であり、世にも珍しい現象と言える(division by zero: 約298 000 000結果(0.51秒)
検索結果
ゼロ除算 - ウィキペディア、フリー百科事典
https://en.wikipedia.org/wiki/ Division_by_zero
このページを翻訳
数学では、ゼロ除算は、除数(分母)がゼロである部門です。このような部門が正式に配当である/ 0をエスプレッソすることができます(2016.1.19.13:45)).

問題の由来は、西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。しかしながら、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。
確定した数学に対していろいろな存念が湧き、話題が絶えないことは 誠に奇妙なことと考えられる。ゼロ除算には 何か問題があるのだろうか。
先ず、多くの人の素朴な疑問は、加減乗除において、ただひとつの例外、ゼロで割ってはいけないが、奇妙に見えることではないだろうか。例外に気を惹くは 何でもそうであると言える。しかしながら、より広範に湧く疑問は、物理の基本法則である、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論に ゼロ除算が公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。それゆえにブラックホール等の議論とともに話題を賑わしてきている。最近でも特殊相対性理論とゼロ除算、計算機科学や論理の観点でゼロ除算が学術的に議論されている。次のような極めて重要な言葉が残されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970

スマートフォン等で、具体的な数字をゼロで割れば、答えがまちまち、いろいろなジョーク入りの答えが出てくるのも興味深い。しかし、計算機がゼロ除算にあって、実際的な障害が起きた:

ヨークタウン (ミサイル巡洋艦)ヨークタウン(USS Yorktown, DDG-48/CG-48)は、アメリカ海軍のミサイル巡洋艦。タイコンデロガ級ミサイル巡洋艦の2番艦。艦名はアメリカ独立戦争のヨークタウンの戦いにちなみ、その名を持つ艦としては5隻目。
艦歴[編集]
1997年9月21日バージニア州ケープ・チャールズ沿岸を航行中に、乗組員がデータベースフィールドに0を入力したために艦に搭載されていたRemote Data Base Managerでゼロ除算エラーが発生し、ネットワーク上の全てのマシンのダウンを引き起こし2時間30分にわたって航行不能に陥った。 これは搭載されていたWindows NT 4.0そのものではなくアプリケーションによって引き起こされたものだったが、オペレーティングシステムの選択への批判が続いた。[1]
2004年12月3日に退役した。
出典・脚注[編集]
1. ^ Slabodkin, Gregory (1998年7月13日). “Software glitches leave Navy Smart Ship dead in the water”. Government Computer News. 2009年6月18日閲覧。
 これはゼロ除算が不可能であるから、計算機がゼロ除算にあうと、ゼロ除算の誤差動で重大な事故につながりかねないことを実証している。それでゼロ除算回避の数学を考えている研究者もいる。論理や計算機構造を追求して、代数構造を検討したり、新しい数を導入して、新しい数体系を提案している。

確立している数学について話題が尽きないのは、思えば、ゼロ除算について、何か本質的な問題があるのだろうかと考えられる。 火のないところに煙は立たないという諺がある。 ゼロ除算は不可能であると 考えるか、無限遠点の概念、無限か と考えるのが 数百年間を超える数学の定説であると言える。
ところがその定説が、 思いがけない形で、完全に覆り、ゼロ除算は何時でも可能で、ゼロで割れば何時でもゼロになるという美しい結果が 2014.2.2 発見された。 結果は3篇の論文に既に出版され、日本数会でも発表され、大きな2つの国際会議でも報告されている。 ゼロ除算の詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku

また、再生核研究所声明の中でもいろいろ解説している。


以 上


再生核研究所声明 279(2016.01.28) ゼロ除算の意義

ここでは、ゼロ除算発見2周年目が近づいた現時点における ゼロ除算100/0=0, 0/0=0の意義を箇条書きで纏めて置こう。

1)。西暦628年インドでゼロが記録されて以来 ゼロで割るという問題 に 簡明で、決定的な解決をもたらした。数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの大きな国際会議で報告され、日本数学会でも2件発表され、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。また, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立された。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていて、特殊相対性理論やブラックホールなどの扱いに重要な新しい視点を与える。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。次のような極めて重要な言葉に表されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970
5)複素解析学では、1次分数変換の美しい性質が、ゼロ除算の導入によって、任意の1次分数変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、ゼロ除算にいう、解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観 。

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

13) ゼロ除算は ユークリッド幾何学にも基本的に現れ、いわば、素朴な無限遠点に関係するような平行線、円と直線の関係などで本質的に新しい現象が見つかり、現実の現象の説明に合致する局面が拓かれた。

14) 最近、3つのグループの研究に遭遇した:

論理、計算機科学 代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の検討(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考えられる。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考えられる。

そこで、これらの認知を求め、ゼロ除算の研究の促進を求めたい:

再生核研究所声明 272(2016.01.05): ゼロ除算の研究の推進を、
再生核研究所声明259(2015.12.04): 数学の生態、旬の数学 ―ゼロ除算の勧め。

以 上


再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める

ゼロで割ること、すなわち、ゼロ除算は、西暦628年インドでゼロが記録されて以来の懸案の問題で、神秘的な話題を提供してきた。最新の状況については声明279を参照。ゼロ除算は 数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの招待された国際会議で報告され、日本数学会でも2件発表された。また、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。さらに, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
最近、3つの研究グループに遭遇した:

論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考える。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考える。
ゼロ除算について、不可能であるとの認識、議論は、簡単なゼロ除算について 1300年を超える過ちであり、数学界の歴史的な汚点である。そのために数学を始め、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だ続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと考える。
そこで、発見から、2年目を迎えるのを期に、世の影響力のある方々に ゼロ除算の結果の公認、社会的に 広い認知が得られるように 協力を要請したい。

文献:

1) J. P. Barukcic and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

2) J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

3) M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI:10.12732/ijam.v27i2.9. 

4) H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. 6(2015), 1--8.  http://www.ijapm.org/show-63-504-1.html

5) T. S. Reis and James A.D.W. Anderson,
Transdifferential and Transintegral Calculus, Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USA

6) T. S. Reis and James A.D.W. Anderson,
Transreal Calculus, IAENG International J. of Applied Math., 45: IJAM_45_1_06.

7) S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

7) S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no.2. 369-380.

8) Saitoh, S., A reproducing kernel theory with some general applications (31pages)ISAAC (2015) Plenary speakers 13名 による本が スプリンガーから出版される。

以 上








0 件のコメント:

コメントを投稿