2016年6月18日土曜日

「時間を見ることができる」という驚くべき共感覚を持つ人 By Janet Ramsden

「時間を見ることができる」という驚くべき共感覚を持つ人

By Janet Ramsden

ある刺激に対して通常の感覚だけでなく異なる種類の感覚をも生じさせるという、一部の人にみられる特殊な知覚現象を「共感覚」と呼びます。この共感覚を持つ人は、知覚情報と共に音が目で見えたり、味を色として感じたり、数字を詳細な色調で感じたりすることが可能です。そんな共感覚に関する研究を行っている心理学者のデビット・ブラング氏は、「時間を見ることができる」という共感覚の中でも奇妙な能力を持った人々の研究を行っています。

The Rare Humans Who See Time & Have Amazing Memories - Discoblog : Discoblog
http://blogs.discovermagazine.com/discoblog/2010/04/02/the-rare-humans-who-see-time-have-amazing-memories/


ブラング氏の研究に参加している「時間を見ることができる」という特殊な共感覚を持った被験者の脳の中には、一定の領域の間に余分な神経接続が見られるとのこと。この構造が原因となって、空間上に時間が構成物として見えるようになっているそうです。ブラング氏の調査の被験者のひとりは、「1年間を表す円環が自分自身を囲んでいるように見える」と語っています。

また、ブラング氏が科学雑誌のNew Scientistに明かした内容によると、時間を見ることができる共感覚の持ち主たちは、「1年間を自分自身を囲む円環として見ることができる。また、この円環状に示された1年間はひと月ごとに区切られており、胸部分に現在の月がくるように見えている」とのことです。


通常、何かしらの予定を決める際などには紙のカレンダーやスマートフォンのカレンダーアプリなどを使って予定を管理することが多いものですが、時間が見える共感覚の持ち主は、目の前に見えるカレンダーから正確に特定の日を示すことができます。これは、ヘッドマウントディスプレイやスマートフォンのカメラなどを通さずに拡張現実(AR)を見るようなもので、そういった感覚を持ち合わせていない側からすると、とても不思議な感覚です。

By Maythee Anegboonlap

さらに、時間が見える共感覚の持ち主と一般の人の記憶力を比較するテストを行ったところ、時間が見える共感覚の持ち主は、普通の人よりもはるかに優れた記憶力を有していることが明らかになっています。実験によると、時間が見える共感覚の持ち主は平均で123の事柄を記憶できたのに対し、普通の人はわずか39個しか記憶できなかったそうで、その数は3倍以上も異なります。

なお、日本にも「時間が見える共感覚の持ち主」はいるようで、以下のようにインターネット上に書き込みを行っています。

共感覚?昔から、頭の中に一年の概念図があります。この感覚はどういうものなの... - Yahoo!知恵袋

共感覚?昔から、頭の中に一年の概念図があります。この感覚はどういうものなのでしょうか?

今までは当たり前でさして気にしなかったことなのですが、
昔から一年の概念が立体的な空間として現れます。
今日は9月27日、頭の中の自分がその一年のどこにいるかも解っています。
私の一年は夏と冬の距離が遠く、春と秋が近い楕円形で、
一年ごとに、左巻きの螺旋を描いてどんどん上に昇っていくような感じです。

共感覚持ちの人ちょっと来てくれ : まとめでぃあ

81:以下、名無しにかわりましてVIPがお送りします:2013/10/07(月) 16:15:47.87 ID:6ztjxKWfO


一年間の日付とか一日の時間が図になるイメージあるけどググったらこれも共感覚なのな
誰に言っても意味分からんって言われたから同じような人が居てちょっと安心した

89: 忍法帖【Lv=10,xxxPT】(1+0:15) :2013/10/07(月) 16:17:12.41 ID:1MeiPtpO0


>>81
それは聞いたことあるぞ!
共感覚……かな?
友達が匂いに物体とかも見えるつってたからにた感じで

108:以下、名無しにかわりましてVIPがお送りします:2013/10/07(月) 16:24:18.87 ID:6ztjxKWfO


>>89
見えるとかそこまでしっかりした感じでもないんだよな
たとえば日付なら漠然と球体があってその球体のなかに日付がそれぞれ転がってる感じだし時間はその転がってる日付の中に段差があってその段差が時間みたいな
書いてみると訳分からんな

115: 忍法帖【Lv=10,xxxPT】(1+0:15) :2013/10/07(月) 16:26:59.91 ID:1MeiPtpO0


>>108
共感覚だと思うぞ!

184:以下、名無しにかわりましてVIPがお送りします:2013/10/07(月) 17:15:34.40 ID:URUl6k6k0


>>81
俺それかも。図を描いてと言われると難しいんだけど……十二月はこの辺りとか、時間だと6時はここの辺りみたいなhttp://gigazine.net/news/20160617-rare-humans-see-time/



\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 300: New challenges on the division by zero z/0=0\\
(2016.05.22)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\

%\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges.

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0, 
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers.

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

\bigskip

{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad) 
$$ 
for all
$$
a, b, c, d \in {\bf C }
$$
and 
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $ 
$$
F (b, 0) = 0.
$$
}

Note that the complete proof of this proposition is simply given by 2 or 3 lines.

\medskip
We thus should consider, for any complex number $b$, as (1.2); 
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse, 

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$, 

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero,
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.

\medskip

In (\cite{mos}), many division by zero results in Euclidean spaces are given and the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

\medskip

See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

Furthermore, T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$. 

Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

For our ideas on the division by zero, see the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252,ann293}).

\section{On mathematics}
Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1. Note its very general assumptions and many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impacts on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and physical problems. See our announcements for the details.

The mysterious history of the division by zero over one thousand years is a great shame of mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful, and will give great impacts to our basic ideas on the universe.

\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various 
physical problems
containing the division by zero. Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the zero division trouble in computers. Now, we should arrange new computer systems in order not to meet the division by zero trouble in computer systems.

\section{General ideas on the universe}
The division by zero may be related to religion, philosophy and the ideas on the universe, and it will creat a new world. Look the new world.

\bigskip

We are standing on a new generation and in front of the new world, as in the discovery of the Americas.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics, {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063. 

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Linear Algebra \& Matrix Theory (ALAMT)(to appear).

\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada, 
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
International Journal of Mathematics and Computation 
(in press).

\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus, 
IAENG International J. of Applied Math., {\bf 45}(2015): IJAM 45 1 06.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/ 

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293(2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\end{thebibliography}

\end{document}

0 件のコメント:

コメントを投稿