2018年11月10日土曜日

\title{\bf Announcement 461: An essence of division by zero and a new axiom} \author{{\it Institute of Reproducing Kernels}\\

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 461:  An essence of division by zero and a new axiom}
\author{{\it Institute of Reproducing Kernels}\\
kbdmm360@yahoo.co.jp
 }
\date{2018.11.10}
\maketitle

 In order to see an essence of our division by zero calculus, we will state a simple survey.

As the number system,  division by zero is realized as the {\bf Yamada field} with the definition of the general fractions $a/b$ containing the case $b=0$, and its various meanings and applications are given. In particular, see \cite{msy} and see also the references.
The field structure is, of course, fundamental in the algebraic structure.


However, apart from  various motivations and any  background, we will give the definition of the  division by zero calculus as follows:
\medskip

 For any  \index{Laurent expansion}Laurent expansion around $z=a$,
\begin{equation} \label{dvc5.1}
f(z) = \sum_{n=-\infty}^{-1}  C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n
\end{equation}
we define the division by zero calculus
\begin{equation}\label{dvc5.2}
f(a) =  C_0.
\end{equation}


For the correspondence \eqref{dvc5.2} for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering  derivatives in \eqref{dvc5.1}, we {\bf  define} any order derivatives of the function $f$ at the singular point $a$ as
$$
f^{(n)}(a) = n! C_n.
$$


\medskip

The division by zero calculus seems to be strange firstly, however, by its various applications and results, we will see that the concept is fundamental in our elementary mathematics, globally. See the references.

For its importance, the division by zero calculus  may be looked as a {\bf  new axiom.}
\medskip

Firstly, for the fundamental function $W= F(z) = 1/z$, we have, surprisingly
$$
 F(0) = 0.
$$
We see its great impacts to our basic idea for the space and in our Euclidean space.
  From the form, we should consider that
\begin{equation}
\frac{1}{0} =0.
\end{equation}
Note that this representation and identity is not any result, but it is only the definition of
$\frac{1}{0}$. Of course, it is not the usual definition as the solution of the equation $0 \cdot z =1$. Here, we are stating that the division by zero calculus and the form of the elementary function lead us to the identity (0.3).
\medskip
\bigskip

{\bf \Large Could we divide the numbers and functions by zero?}
\medskip

For this old and general question, we will give a simple answer.

For any analytic function
$f(z)$ around the origin $z=0$ that is permitted to have any singularity at $z=0$ (of course, any constant function is permitted),
we can consider the value, by the division by zero calculus

\begin{equation}
\frac{f(z)}{z^n}
\end{equation}
at the point $z=0$, for any positive integer $n$. This will mean that from the form
we can consider it as follows:
\begin{equation}
\frac{f(z)}{z^n}\mid_{x=0}.
\end{equation}
\bigskip
For example,
$$
\frac{e^{x}}{x^n}\mid_{x=0} = \frac{1}{n!}.
$$
\medskip

{\bf \Huge In this sense, we can divide the numbers and analytic functions by zero.}

\bibliographystyle{plain}
\begin{thebibliography}{10}


\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.


\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18april}
H.  Okumura and S. Saitoh,
Harmonic Mean and Division by Zero,
Dedicated to Professor Josip Pe\v{c}ari\'{c} on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

\bibitem{os18e}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG),  {\bf 7}(2018), 2, 44--49.


\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.


\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182.

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.


\end{thebibliography}

\end{document}

0 件のコメント:

コメントを投稿