2018年11月24日土曜日

的川博士の銀河教室 525 宇宙膨張「ハッブルの法則」 「ハッブル・ルメートルの法則」に

525 宇宙膨張「ハッブルの法則」

「ハッブル・ルメートルの法則」に

 19世紀後半、米国が驚異きょうい的な経済発展をげて出現した桁違けたちがいのお金持ちの中に、巨大きょだいな天体望遠鏡を建設する夢を持つ人々ひとびとがいました。そして1917年、カリフォルニアのウィルソン山に当時世界一の望遠鏡(口径100インチ=約2.5メートル)ができました。その大望遠鏡を使って、エドウィン・ハッブル(写真1)が遠い銀河を観測し、「宇宙が膨張している」という発見をしたのは1920年代の末でした。
     このころにはすでにロシアの若き数学者アレクサンドル・フリードマンが、アインシュタインの一般相対性理論いっぱんそうたいせいりろんを解き、「宇宙は膨張も収縮もする」という数学上の解を導いていました。しかし、この頃のアインシュタイン自身は、自分の作った方程式から出ているその結論は数学上のものであり、現実の宇宙が実際に膨張するはずがないと信じていました。
     当時アインシュタインは、生まれ故郷のドイツから米国に移り、ニューヨークで研究していました。ハッブルの観測した事実をどうしても疑問に思い、1932年、学会でカリフォルニアに来た際、ウィルソン山天文台に足を運び、自分の目で望遠鏡をのぞき(写真2)、ハッブルからも熱心に説明を聞き、徹底的てっていてきに議論をした結果、「仕方がない、宇宙は膨張している」とつぶやいたと言います。
     アインシュタインに、「静止した宇宙」という考え方を捨てさせ、ビッグバン理論の先駆せんくとなったこの大発見は「ハッブルの宇宙膨張」と呼ばれています。ところが、ハッブルの発見の数年前から、ジョルジュ・アンリ・ルメートルというベルギーの天文学者(写真3)が、やはりアインシュタインの理論に基づいて「宇宙が膨張している」という論文を立て続けに発表していたのです。しかも宇宙が特異点から始まったというビッグバン理論のもとになるアイデアも示していました。また、ルメートルは、今日ハッブル定数と呼ばれる膨張速度を決める定数も計算し、宇宙年齢ねんれいを100億~200億年と推定しています。この値は現在の最新の観測から得られた「138億年前」という値と見事に整合しています。ただ、ルメートルの論文は、フランス語で書かれていた上、掲載けいさいされていたのは知名度が低い学術誌だったので、ハッブルの発表のかげもれる形になってしまったのです。
     こうした事情から、今年8月にオーストリア・ウィーンで開催かいさいされた国際天文学連合(IAU)総会で、「ハッブルの宇宙膨張の法則」を、「ハッブル・ルメートルの宇宙膨張の法則」に変更へんこうしようという提案がなされ、圧倒的多数あっとうてきたすうの支持で、この新名称めいしょう推奨すいしょうすると発表しました。今後は広くこの呼び方が用いられることになるでしょう。http://mainichi.jp/articles/20181124/kei/00s/00s/020000c

    ゼロ除算の発見は日本です:
    ∞???    
    ∞は定まった数ではない・
    人工知能はゼロ除算ができるでしょうか:

    とても興味深く読みました:2014年2月2日 4周年を超えました:
    ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


    ゼロ除算関係論文・本
    \documentclass[12pt]{article}
    \usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
    \numberwithin{equation}{section}
    \begin{document}
    \title{\bf  Announcement 461:  An essence of division by zero and a new axiom}
    \author{{\it Institute of Reproducing Kernels}\\
    kbdmm360@yahoo.co.jp
     }
    \date{2018.11.10}
    \maketitle

     In order to see an essence of our division by zero calculus, we will state a simple survey.

    As the number system,  division by zero is realized as the {\bf Yamada field} with the definition of the general fractions $a/b$ containing the case $b=0$, and its various meanings and applications are given. In particular, see \cite{msy} and see also the references.
    The field structure is, of course, fundamental in the algebraic structure.


    However, apart from  various motivations and any  background, we will give the definition of the  division by zero calculus as follows:
    \medskip

     For any  \index{Laurent expansion}Laurent expansion around $z=a$,
    \begin{equation} \label{dvc5.1}
    f(z) = \sum_{n=-\infty}^{-1}  C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n
    \end{equation}
    we define the division by zero calculus
    \begin{equation}\label{dvc5.2}
    f(a) =  C_0.
    \end{equation}


    For the correspondence \eqref{dvc5.2} for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering  derivatives in \eqref{dvc5.1}, we {\bf  define} any order derivatives of the function $f$ at the singular point $a$ as
    $$
    f^{(n)}(a) = n! C_n.
    $$


    \medskip

    The division by zero calculus seems to be strange firstly, however, by its various applications and results, we will see that the concept is fundamental in our elementary mathematics, globally. See the references.

    For its importance, the division by zero calculus  may be looked as a {\bf  new axiom.}
    \medskip

    Firstly, for the fundamental function $W= F(z) = 1/z$, we have, surprisingly
    $$
     F(0) = 0.
    $$
    We see its great impacts to our basic idea for the space and in our Euclidean space.
      From the form, we should consider that
    \begin{equation}
    \frac{1}{0} =0.
    \end{equation}
    Note that this representation and identity is not any result, but it is only the definition of
    $\frac{1}{0}$. Of course, it is not the usual definition as the solution of the equation $0 \cdot z =1$. Here, we are stating that the division by zero calculus and the form of the elementary function lead us to the identity (0.3).
    \medskip
    \bigskip

    {\bf \Large Could we divide the numbers and functions by zero?}
    \medskip

    For this old and general question, we will give a simple answer.

    For any analytic function
    $f(z)$ around the origin $z=0$ that is permitted to have any singularity at $z=0$ (of course, any constant function is permitted),
    we can consider the value, by the division by zero calculus

    \begin{equation}
    \frac{f(z)}{z^n}
    \end{equation}
    at the point $z=0$, for any positive integer $n$. This will mean that from the form
    we can consider it as follows:
    \begin{equation}
    \frac{f(z)}{z^n}\mid_{x=0}.
    \end{equation}
    \bigskip
    For example,
    $$
    \frac{e^{x}}{x^n}\mid_{x=0} = \frac{1}{n!}.
    $$
    \medskip

    {\bf \Huge In this sense, we can divide the numbers and analytic functions by zero.}

    \bibliographystyle{plain}
    \begin{thebibliography}{10}


    \bibitem{kmsy}
    M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
    New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
    Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

    \bibitem{ms16}
    T. Matsuura and S. Saitoh,
    Matrices and division by zero $z/0=0$,
    Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
    Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
    \\ http://dx.doi.org/10.4236/alamt.2016.62007.


    \bibitem{mms18}
    T. Matsuura, H. Michiwaki and S. Saitoh,
    $\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

    \bibitem{msy}
    H. Michiwaki, S. Saitoh and  M.Yamada,
    Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

    \bibitem{mos}
    H. Michiwaki, H. Okumura and S. Saitoh,
     Division by Zero $z/0 = 0$ in Euclidean Spaces,
     International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.


    \bibitem{osm}
    H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
    Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

    \bibitem{os}
    H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

    \bibitem{o}
    H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

    \bibitem{os18april}
    H.  Okumura and S. Saitoh,
    Harmonic Mean and Division by Zero,
    Dedicated to Professor Josip Pe\v{c}ari\'{c} on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

    \bibitem{os18}
    H. Okumura and S. Saitoh,
    Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

    \bibitem{os18e}
    H. Okumura and S. Saitoh,
    Applications of the division by zero calculus to Wasan geometry.
    GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG),  {\bf 7}(2018), 2, 44--49.


    \bibitem{ps18}
    S. Pinelas and S. Saitoh,
    Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.


    \bibitem{s14}
    S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

    \bibitem{s16}
    S. Saitoh, A reproducing kernel theory with some general applications,
    Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182.

    \bibitem{s17}
    S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

    \bibitem{ttk}
    S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.


    \end{thebibliography}

    \end{document}

    \documentclass[12pt]{article}
    \usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
    \numberwithin{equation}{section}
    \begin{document}
    \title{\bf  Announcement 460:  Change the Poor Idea to the Definite Results For the Division by Zero --  For the Leading Mathematicians}
    \author{{\it Institute of Reproducing Kernels}\\
    kbdmm360@yahoo.co.jp
     }
    \date{2018.11.08}
    \maketitle

     The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space based on the new concept of division by zero calculus: for the function $f(z) = 1/z$
    $$
    f(0) = 0
    $$
     since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
    In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
     For the details, see the site: http://okmr.yamatoblog.net/
    \medskip

    In the international conference:
    \medskip

    http://www.meetingsint.com/conferences/\\appliedphysics-mathematics\\Applied Physics and Mathematics Conference 2018\\
    \medskip

    \noindent
    we  presented the basic results on  October 23 and
    for the details,  see the references with the talk sheets:  saburousaitoh
    181102.pdf :

    {\Huge \bf

    Close the mysterious and long history of division by zero and \\ open the new world\\ since Aristoteles-Euclid:\\ $1/0=0/0=z/0= \tan (\pi/2)=0$\\
    }
    and the abstract: 201810.23abstract.
    \bigskip

    Particularly, note that the division by zero calculus is a fundamental definition based on the basic assumption that may be considered as a new axiom for its importance.

    As stated
    by some physicist
    \medskip

    {\it Here is how I see the problem with prohibition on division by zero,
    which is the biggest scandal in modern mathematics as you rightly pointed
    out} (2017.10.14.08:55),
    \medskip

    \noindent
    it seems that the long history of the division by zero is our shame and our mathematics in the elementary level has basic missings. Meanwhile, we have still  great confusions and wrong ideas on the division by zero. Therefore, we would like to ask for the good corrections for the wrong ideas and some official approval for our division by zero as our basic duties.


    \bibliographystyle{plain}
    \begin{thebibliography}{10}


    \bibitem{kmsy}
    M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
    New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
    Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

    \bibitem{ms16}
    T. Matsuura and S. Saitoh,
    Matrices and division by zero $z/0=0$,
    Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
    Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
    \\ http://dx.doi.org/10.4236/alamt.2016.62007.


    \bibitem{mms18}
    T. Matsuura, H. Michiwaki and S. Saitoh,
    $\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

    \bibitem{msy}
    H. Michiwaki, S. Saitoh and  M.Yamada,
    Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

    \bibitem{mos}
    H. Michiwaki, H. Okumura and S. Saitoh,
     Division by Zero $z/0 = 0$ in Euclidean Spaces,
     International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.


    \bibitem{osm}
    H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
    Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

    \bibitem{os}
    H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

    \bibitem{o}
    H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

    \bibitem{os18april}
    H.  Okumura and S. Saitoh,
    Harmonic Mean and Division by Zero,
    Dedicated to Professor Josip Pe\v{c}ari\'{c} on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

    \bibitem{os18}
    H. Okumura and S. Saitoh,
    Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

    \bibitem{os18e}
    H. Okumura and S. Saitoh,
    Applications of the division by zero calculus to Wasan geometry.
    GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG),  {\bf 7}(2018), 2, 44--49.


    \bibitem{ps18}
    S. Pinelas and S. Saitoh,
    Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.


    \bibitem{s14}
    S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

    \bibitem{s16}
    S. Saitoh, A reproducing kernel theory with some general applications,
    Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182.

    \bibitem{s17}
    S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

    \bibitem{ttk}
    S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.


    \end{thebibliography}

    \end{document}

    \documentclass[12pt]{article}
    \usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
    \numberwithin{equation}{section}
    \begin{document}
    \title{\bf  Announcement 454:  The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-23}
    \author{{\it Institute of Reproducing Kernels}\\
    kbdmm360@yahoo.co.jp
     }
    \date{2018.9.29}
    \maketitle
    {\Large \bf
     The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space based on the new concept of division by zero calculus: for the function $f(z) = 1/z$
    $$
    f(0) = 0
    $$
     since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
    In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
     For the details, see the site: http://okmr.yamatoblog.net/
    \medskip

    In the above international conference:
    \medskip

    \medskip

    John Martin, Program Coordinator\\
    http://www.meetingsint.com/conferences/\\appliedphysics-mathematics\\Applied Physics and Mathematics Conference 2018\\
    appliedphysics@annualmeetings.net\\
    appliedphysics@meetingseries.org
    \medskip

    \medskip

    we will present our results while 11:00-12:00, October 23 and we will accept all the related questions and comments while 13:00-15:00 around.

    For the details, please see the below:
    \medskip


    (If a person participates in our session around the morning and afternoon free discussions, he should pay euro 250. If the person registers in a group of 5 or more, the amount will be reduced to euro 180 per person. The morning session is very valuable and has the potential to bring change in the education system.
    For one night stay on 22nd October, he needs to pay euro 150.
    I hope everything is clear.
    Kindly let me know if any query.
    Thanks!
    Regards,
    John)

    }
    \bigskip

    \bigskip

    {\Huge \bf

    Close the mysterious and long history of division by zero and \\ open the new world since Aristoteles-Euclid: $1/0=0/0=z/0= \tan (\pi/2)=0.$
    }
    \bigskip

    \bigskip

    {\large \bf
    For a triangle ABC with side length $a,b,c$.
    We have the formula
    $$
    \frac{a^2 + b^2 - c^2}{a^2 - b^2 + c^2} = \frac{\tan B}{\tan C}.
    $$
    If $ a^2 + b^2 - c^2 =0$, then $C = \pi/2$. Then,
    $$
    0 =  \frac{\tan B}{\tan \frac{\pi}{2}} = \frac{\tan B}{0}.
    $$
    Meanwhile, for the case
    $
    a^2 - b^2 + c^2 =0,
    $
    then $B = \pi/2$, and we have
    $$
    \frac{a^2 + b^2 - c^2}{0}= \frac{\tan \frac{\pi}{2}}{\tan C}=0.
    $$



    \end{document}




    0 件のコメント:

    コメントを投稿