2018年11月17日土曜日

和算絵馬、東大寺で人気 「大仏の湯は何リットル必要?」 社会 2018/11/17 11:53

NEW !
テーマ:

和算絵馬、東大寺で人気 「大仏の湯は何リットル必要?」 

社会
2018/11/17 11:53
 
「大仏が肩まで風呂に漬かるには何リットルのお湯が入る湯船が必要か」――。江戸時代の数学「和算」を用いたこんな問題が書かれた「算額」と呼ばれる絵馬が東大寺(奈良市)に掲げられ、観光客の人気を集めている。条件は自分で設定でき、答えや解き方は一つではない。学校の授業で使われるなど、課題解決の発想力が養えると好評だ。
大仏殿の向かって右手下にある算額。図形を交えて書かれた見慣れない和算の問題に参拝客らが興味深そうに見入る。外国人観光客が詳しい説明を英語や日本語で読めるQRコードをスマートフォンで読み取っていた。
愛知県から観光で訪れた会社員、小林幸平さん(38)は「服を着たまま漬かるのか、などと自分で設定をいろいろ考えて、推測しながら解くのかな」と頭をひねった。
算額は自分が考案した問題や解き方を書き記した絵馬。江戸時代から大正時代に日本で数学者や数学愛好家の間で流行した。東大寺だけでなく、日本各地の神社や寺などに約千の算額が残っている。特に福島県や岩手県、埼玉県に多いとされる。
毎年1月23日は「算額文化を広める日」で、公益財団法人「日本数学検定協会」(東京都)が2015年から東大寺に算額の奉納を始めた。解答を郵送などで募集している。
今年は9月初旬に締め切られ、団体と個人を合わせて約1460の解答が寄せられた。応募は年々増えており、中学校など団体からも多かった。私立市川中学校(千葉県市川市)の数学科教諭は「日本史や古典、数学など教科の枠にとらわれず学習できる。足りない条件を見つけ出して検証し、友人と議論するといった過程が力になる」と話す。
優れた解答は協会の公式ホームページで公開中だ。大仏の湯船については3通りを想定し、大仏が手足を伸ばして入った場合、169万5千リットルが入るサイズと導き出す解答が選ばれた。
一緒に奉納された「東大寺の大鐘を8人一緒についた。鐘の音は半径何キロまで届くか」という問題では、エネルギーに着目し、当時は騒音が少なかったことも勘案して約5キロと計算した答えが紹介されている。
和算研究家の小寺裕さん(70)は「江戸時代の武士や商人は幅広く和算をたしなんでいた。試験のための数学ではない。工夫次第で、微分積分を知らない中学生でも解ける。地元にも算額があるかもしれないので、探して解いて楽しんで」と話した。〔共同〕
ゼロ除算の発見は日本です:
∞???  
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本
https://ameblo.jp/syoshinoris/entry-12370797278.html
 
再生核研究所声明 451(2018.9.14):   みんなの数学、大衆の数学 ― 和算の風土を取り戻そう
小林龍彦先生の解説:
 和算入門-
小林 龍彦 前橋工科大学名誉教授
を毎月楽しく拝見している。 江戸時代の文化的な風情が感じられて堪らなく愛おしい数学と数学の愛好者の世界が感じられる。 江戸時代の数学の文化の様子は 世界的に見ても特徴的でまれなものではないだろうか。 背景には永く続いた平和があり、 ある種の十分なゆとりの表れと言えるのではないだろうか。 人間、やらなければならないことが少なくなれば、数学などをやるほかに やることがなくなることは 相当に真実ではないだろうか。 実際、数学のように 実際的には、何の役にも立たないように思われる抽象的な世界に浸っていられるのは 十分な余裕の表れではないだろうか。 仕事や実益的な利益に結び付かないだけに、好きなことを考えるという要素が強い。 - ここであるが、逆に、人間の一面として 結構本質的な、競争心や優越感を満足させるための数学は 歴史的にも数学を進めてきた原動力になっていることは 否めない。
現代でも、有名なまたは難しい問題が解けたとか、数学者の才能が強調されるのが 数学界の話題の中心になりがちである。 - 確かに数学界には想像もできないような才能の持ち主が多い。 最も優秀な数学者たちが、 人類の名誉にかけて挑戦しているのは 結構多いのでは ないだろうか。― 不可能、そんなことは、人類の名誉にかけて許せない、と感じた。
戦場でも数学をやっていた数学者の心情は、そこはどうなっているかとの、真理の追究の激しい情念 ではないだろうか。
それで、現代は 数学が難しく、高度化してしまい、お互いにお互いの研究状況ばかりではなく、研究課題の意味づけや位置づけさえ想像すらできないような形相が多いといえるのではないだろうか。さらに 評価、評価の世界的な流れの中で、研究は高度化、細分化し、繊細で、末梢的な形相も表れているといえるのではないだろうか。 大事な動機と目標を見失って、進んできた先をただ夢中で発展させている研究課題が多いと言える。 それで、その関係専門家でさえ、興味を失い、まして研究の教育や社会的への影響や貢献の意識さえ薄くしているのでは ないだろうか。
研究と教育の乖離、研究と社会の乖離、数学が大衆と乖離してしまい、数学の文化的な享受の要素は 数学界全体として 驚くほどに小さい状況ではないだろうか。 数学の研究成果などは 一般の話題になることはほとんどなく、初等数学のカリキュラムの研究による変更なども殆どなく、基礎数学は既に確立して 変わりようがないように考えられているのではないだろうか。
江戸時代、趣味のように和算に取り組んでいた世相が うらやましく感じられる。 多くの人が美しい数学の結果を発見して交流し、楽しむ社会である。
このような観点から、初等数学である、 ゼロで割ることの 新しい数学、ゼロ除算は 新奇な世界で、みんなで新しい結果を発見でき、大いに楽しめる数学として 良い分野、課題ではないだろうか。 みんなで楽しめる数学の関心を促したい。小林龍彦先生の和算の解説と一緒に同じサイトで解説を続けているので参照して頂きたい。
興味・関心を起こさせる例として 勾配に関する話題を 声明431 から取り挙げたい:
今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。 発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?
発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。
原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会、代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。―――
ゼロ除算は、多くの場面に現れているので、いろいろ探して、お互いに楽しめれば幸いです。発見されたら、多くの具体例のように登録して、記録に残していきたい。良いものは当然、論文に載せたり、著書に採用したい。 素人でも数学の研究に参加できる稀なる課題であり、稀なる機会ではないだろうか。皆さんも新しい発見は、如何でしょうか。 公表のいろいろな具体例を参照して下さい。驚く程近くに、簡単にゼロ除算が現れていることを知るでしょう。とても考えられないと思われてきたことが、実は至る所に現れていたと言える。それらは、さらに凄い世界に通じている。
以 上
Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.7, (2018), Issue 2, pp.44-49 APPLICATIONS OF THE DIVISION BY ZERO CALCULUS TO WASAN GEOMETRY HIROSHI OKUMURA AND SABUROU SAITOH


再生核研究所声明 441(2018.8.9):  小・中・高校の数学教育の視点からのゼロ除算について

一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
法華経3000巻の意義・教訓から、小・中・高校の数学教育の視点からのゼロ除算について感覚的に情念として触れてみたい。 初等数学教育において ゼロ除算の教育は改められるべきである。そもそも割り算、分数の意義、意味を正確にきちんと教育する必要がある。理解は正確に 実際当時6歳であった道脇愛羽さんが理解したように理解すれば、割り算の意味もゼロ除算の意味も明解になり、その影響と良き視点、世界の広がりは極めて大きい。除算の考えによる割り算の捉え方、すなわち、割り算とはたとえば10割る2とは10の中に2が幾つか入っているかと考えることが原点で、それは10から2を 何回引けるかということを意味する。我々はその詳しい方式を道脇方式として述べて、論文や解説で精しく述べている。既に割り算の計算方法、指導方法なども道脇裕氏によって具体的に提案されている。これは割り算の計算法の初期の指導法として本質的で極めて優れた方法に思えるので、広く活用されることを期待している。
そこで、大事なことは 永い神秘的な歴史を有するゼロ除算、ゼロで割る問題があっけなく解決してしまい、ゼロ除算はゼロであるという結果を導くことである。すなわち、1/0=0/0=a/0=0 である。ゼロで割るとは、割らないことと同じであるということになる。したがって、割りあてられた量もなく、ゼロである。ここで、ゼロで割ることの正確な意味を捉え、またゼロの意味をいろいろな視点からとらえる基礎を得ることになるだろう。ゼロのいろいろな意味を考える基礎も得られる。
次の段階で、関数が現れ、反比例の具体的な関数y=1/xが現れてくる段階になれば、その関数の原点での値は、ゼロ除算の結果から、それをゼロと考えることの自然性を学び、
その意義の大きさはカリキュラムの進展とともに驚きの感情をもって学ぶことができるだろう。立体射影の概念と無限遠点における強力な不連続性は我々の数学と空間の初歩的で基本的な実体であるから、早期に学習しておきたい。内容は難しくなく、ユークリッド幾何学や三角関数の性質についても全般的な修正が求められる。その辺のカリキュラムの変更は時間を掛けて整然とした形に改められなければならないが内容自体はそうは難しくなく、しかも視野は大きく拓かれる。大学以降ではゼロ除算は数学の公理系の変更、追加のように扱われ初等数学全般の修正が求められる。象徴的な結果は\tan(\pi/2)=0、すなわちy軸の勾配はゼロであると述べられる。それは、幾何学、解析学全般に大きな影響を与える。微分方程式論や解析関数論などは本質的な修正が行われ、数学は完全化され、美しくなるだろう。
そこで、数学教育に携わる方は1歩進んで次の世代の数学を学ばれ、それを楽しく生徒たちに折りに触れて紹介され、生き生きとした数学の世界を 紹介して頂きたいと願っている。 数学はできていて 完成されたものではなく、未完の発展中の存在で未知の世界と盛んに関係している存在であるとしたい。そのような教育は真理を求める基本的な精神の涵養と育成にも大きく貢献するだろう。またゼロ除算発見の最大の意義は、人間が如何に独断と偏見に満ち、思い込んだら抜けられない存在であるか、我々の視野が如何に狭く、単細胞的な存在であるかを歴史的に学べるという点にあると言える。それには世の秀才や天才、偉大な人びとさえ例外でないことを示している。人間を知ることである。
以 上

再生核研究所声明 442(2018.8.10):  ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.8.8:40 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は ゼロ除算の研究の重要性とその研究を進めるための各種協力の要請である。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
以 上


再生核研究所声明 443(2018.8.13):  アリストテレス以来、二千年を越える封印、タブーの解消 - ゼロ除算

一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.11.11:20 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。
ゼロで割る問題、ゼロ除算は歴史家の分析によれば、最初に考えたのはアリストテレスで、物理的な意味から真空の比、ゼロ除算は不可能であると述べ その後の西欧文化に大きな影響を与えたと言う。狭義ではゼロの発見と算術の発見者Brahmagupta (598 -668 ?)がゼロ除算0/0 を考え、その後1300年を越えて、ゼロ除算は議論されてきたが、 現在でも未明の状態と考えられる。ゼロ除算は2014.2.2発見されて論文などにも公表されているが、そのあまりにも永い歴史のゆえに 中々認知されない状況が続いている。それが殆ど当たり前のことなのに、拒否、受け入れられない状況が続いている。最近も誤解を解消すべく解説をしている:
再生核研究所声明 434 (2018.7.28)  ゼロ除算の誤解と注意点
再生核研究所声明 437 (2018.7.30)  ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
そこで、タブーの理由を考察して置きたい。ゼロ除算の結果を複数のヨーロッパの数学者に直接話したときに、アリストテレスの名前をあげて、異様に感情むき出しで拒否されたのは 強力な体験である。表情をサッと変えられた方も結構居た。そのような話しは聞きたくないという強い意志表示であるから、単に数学の話しをしているようには 感じられないものである。それも20年来の友人たちの間での出来事である。背後には永く深いギリシャ文化の影響、無やゼロ、空を嫌う文化背景、無神論を発想しているような 深い拒否反応である。 日本でもゼロで割ってはいけないは永い伝統であるから 受け入れられないは あるが、ゼロについての不愉快な気持ちは 零点や消えること、無くなることなど 不愉快な気持ちが強いようである。
数学的には 簡単にゼロ除算は不可能であることが証明されてしまう事実と共に1/0 は 無限大のようなものであるとの確信が深いためであろう。それがゼロであると言われて天地が ひっくり変える様な驚きを感じるだろう。実際、基本的な関数y=1/x を考えて、xが小さく成っていく時、yの値がどんどん大きく発散している様子を思い浮かべるだろう。アリストテレスの世界観 連続性に反するので、そのような突飛なことは認められないと考えられてきた。そこで、ゼロ除算は 有る意味では神秘的な対象 になってしまう。実際ゼロ除算は、神秘的な問題と考えられてきた。
現在でも、インターネットの世界でもそのような扱いになっている。
永いタブーの理由は、無、ゼロ、空などの忌み嫌う感情、世の連続性に拘るギリシャ文化の強い影響、数学的に明解な 不可能であることの証明 があるためではないだろうか。実際には、最も簡単な方程式 ax =b の解として、分数b/a, 割り算を考えれば、有名なMoore-Penrose一般逆で 解は何時でも一意に存在して 1/0=0 であることは相当に基本的な考えて ゼロ除算は当たり前の周知の筈と考えられるが、上記の永い伝統、思い込みで それらは受け入れられず、沢山の意味付けや例を示されても、中々理解されない状況が続いていると考えられる。しかしながら、ゼロ除算は発見後3週間くらいで、ゼロ除算は割り算の意味から当たり前であるとの道脇親娘(当時6歳)の言明は誠に興味深い。
以 上


再生核研究所声明 434 (2018.7.28) :  ゼロ除算の誤解と注意点
(2018.7.26.16:35 沢山ゼロ除算の例を作られたり、相当ゼロ除算の研究に没頭している方からメールが寄せられたが、相当基本的な誤解をしている様子が伺えるので、そのメールをヒントに、誤解を解くような気持で、ゼロ除算の解説をしたい。多くの人が同じような誤解に陥っているのではないかと思われるからである。)
その中で、ゼロ除算は公理系に基づいて議論されていないので、数学界で受け入れ難いのではないかとゼロ除算の数学の不備を指摘している。 数学としてゼロ除算は公理系との関係は 実は 深く関係する面があるが、 ゼロ除算の数学は、厳然として公理系の問題を避けて数学が出来ることを述べたい。
動機、意味付け、裏付けを除いて、はじめにゼロ除算算法を ローラン展開の正則項C_0 で定義する。 ― 簡潔に素人流に言えば、関数y=1/xの原点における値をゼロと定義すること。 これが ゼロ除算の核心である。これだけの仮定からいろいろな結果を論理的に導く。 典型的な例は \tan(\pi/2) = 0 である。 ― これはy軸の勾配がゼロであること、垂直に立っている電柱の勾配がゼロであると表現される。 この結果はユークリッド幾何学、解析幾何学、微分幾何学、三角関数、微分法、複素解析など、広範に現れて従来説明できなかったような状況を上手く解釈できるなど大きな影響を初等数学全般に与える。 簡単には 現代初等数学には 基本的な欠陥があると表現される。 既に800件を超える沢山の具体例が得られ、公表されている。そこで問題は、最初の仮定が 証明できないで仮定されていることである。それ故に 確かでないものから導かれた結果が危うく成るのではないだろうかと 人は危惧されるのでは ないだろうか。仮定から導かれた結果とは 何だろうか。こういう仮定をすれば、このような結果が得られるでは、最初の仮定がおかしければ それから導かれる結果もおかしくなるのではないだろうかと心配する。 そこで数学とは何だろうかと問う必要がある。 数学とは公理系から導かれた関係からなる総体が一つの数学である。 群の公理系から導かれる全体が群論であり、ユークリッド空間の公理系から導かれる関係の世界が ユークリッド幾何学である。 ゼロ除算算法の仮定から導かれる世界がゼロ除算数学であり、その意味でゼロ除算算法の定義は公理のようなものである。 大事なことはゼロ除算の真偽は問えないということである。良い数学とは、ゼロ除算が良い数学と言えるかどうかは、それらから導かれた結果、関係、展開が世の中にどれほどの良い影響を与えるかにかかっており、仮定や公理系の真偽はただ矛盾なく展開されているかにかかっていると言える。
そこでゼロ除算の数学の優秀性を示す為に沢山の具体例を示し、人生観や世界観に関わる大事な世界を拓くことを具体的に示している。特にユークリッド以来の空間の考えを齎した意義を示している。 現代初等数学が全般的に初歩的な欠陥があることを広く示している。
ゼロ除算は ゼロ除算の定義の発見であり、ゼロ除算をどのように捉えるかが本質的な問題であった。ゼロ除算関係者には 空回りを続けている人がほとんどで、ゼロ除算の意味、定義をきちんとできなかったためと考えられる。ゼロ除算とは発見であり、1/0,0/0,z/0などの定義、意味をはっきりさせることであった。 その上で、それらのものにゼロを対応させることである。ちょうど群の公理系が定義されているように、ゼロ除算を含む山田体の構造すら確立されており、ゼロ除算の数学的基礎は既に確立している。
特にゼロ除算では、得られた結果を吟味して 良いものを採用するように要請している。
しかしながら、この態度は そもそも数学の基本的な姿勢では なかったろうか。得られた結果がどのような意味を有し、より良い効果を社会に齎すか 絶えず検証する態度が大事ではないだろうか。 その様な検証が無ければ独りよがりの世界に陥ってしまうのでは ないだろうか。
非ユ-クリッド幾何学の出現で  平行線が無限個存在する幾何学が現れたと言われれば、そのような数学には 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、同じように発想するのではないだろうか。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。
2018.7.27.8:40

以 上

再生核研究所声明 437 (2018.7.31) :  ゼロ除算とは何か - 全く新しい数学、新世界である
人の生きるは真智への愛にある。 真智とは神の意志のことである。その素は情念にある。要するに事実、真実を知りたいという 心の底から湧いて来る情熱である。
ゼロ除算とは、ゼロで割ることを考えることであるが、割る意味を常識的に掛け算の逆として、0 掛ける x が a  の方程式の解と考えれば、そのような解はa がゼロでなければ解が存在しないことが直ちに証明されてしまう。 ゆえにゼロ除算は不可能であるとなってしまう。 ところが算術の確立者が1300年も前に、既にゼロ除算を考え、さらに物理的な観点からアリストテレスがゼロ除算は不可能であると考察を行っているという。しかしながら、Einstein や多くの物理学者や 計算機関係者によってゼロ除算は考えられて来て 永い神秘的な歴史をたどっている。物理学の基本方程式にゼロ分のが現れて その時の意味が問題になり、他方、計算機がゼロ除算に遭うと計算機障害を起こすので、計算機障害を回避したいという動機もある。また、不可能であると言われると 何とか可能にしたいという自然な欲求が 人間の心 には存在する。 ― 実際、数学の歴史は 不可能を可能にしてきた歴史とも見られ、ゼロ除算も可能になるだろうと 予言していた数学者が存在していた。(再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること:相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ビッグバン、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。以下略)
ゼロ除算の発見には 思えば、奇妙な状況が起きている。ゼロ除算の本質は、基本的な関数y=1/x  の原点での値をゼロと定義して、それを1/0=0 と書くことである。沢山の理由付けや説明の方法は発見されているが、この事実は現代数学の公理系や定理から導くことができない。しかしここから発展されるゼロ除算算法から、現代数学の広範な部分に新規な知見や結果が沢山導かれ、それらを補完しなければ現代数学は 完全とは言えず、いろいろ不備を備えていることが800件を超える具体例で示されている。論理の厳密な展開でなく本質的な説明を簡明に行いたい。ゼロ除算とは、 要するに解析関数の孤立特異点で、そこでの値をローラン展開の正則部の係数C_0 で定義して、その結果を応用するということである。- 関数 W=1/z の原点での値をゼロとする。今まで、孤立特異点で 特異点の周りで考え、孤立特異点に近づけば無限の値に近づくと考え、特異点で極をとると 表現されてきた。 この事実は当然適切で、正しいがゼロ除算では、孤立特異点自身では 固有な値C_0をとるとするのであるから、未だかつて誰も考えたことのない数学、世界であると言える。ゼロ除算の結果を1/0=0/0=\tan(\pi/2) =0 などと表現すれば、 人は それは 何だ、とても信じられない結果で、 論理を越えて そのような数学は興味も関心もないと顔をしかめて表明するだろう。しかしながら、似たような世界史上の事件を想い出したい。- 非ユ-クリッド幾何学の出現で  平行線が無限個存在する幾何学が現れたと言われれば、そのような数学は 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。
ところが具体的にいろいろ考えれば、そのような世界は当たり前に存在して、 反ってユークリッド幾何学より面白く大きな役割を有することが分かってきている。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、始めには同じように発想するだろう。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。ゼロ除算と現代数学は背反するのでは なく、 現代数学の欠陥、例外点として避けていたところを 補完して完全な数学にする性質を持っている。現代数学を完全化させる全く新しい数学が ゼロ除算である。ゼロ除算の余りに大きな影響のために ゼロ除算は数学の公理系の一つに加えられるべきものと考えられる。次も参照:

再生核研究所声明 434 (2018.7.28) :  ゼロ除算の誤解と注意点
再生核研究所声明 431(2018.7.14):  y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界? 
以 上

再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界? 

2018年7月12日8時25分 ひとりでに湧いてきた。 おかしな私に おかしな構想が湧いてきた。ガリレオは つぶやいたという それでも地球は動いていると。 そのように、これは真実と素直な心情と思えるので 一気に纏めて置きたい。
まず、次の記録、事実を回想する: 今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?
発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。
原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会,代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。
以 上


 
 
 

0 件のコメント:

コメントを投稿