2018年11月21日水曜日

【阿部亮のつぶやき世界一周】ホーキング博士の偉大な業績 「人は死ねばゴミになる!」と断言

【阿部亮のつぶやき世界一周】ホーキング博士の偉大な業績 「人は死ねばゴミになる!」と断言

 今年の春先に亡くなった車椅子の天才物理学者、スティーブン・ホーキング博士の遺作が話題になっている。
 私は高校1年生の頃に「ホーキング、宇宙を語る」を読んで、大変なショックを受けた。それは当時まだ一般的には曖昧で、SFっぽく受け止められていた、ビッグバンやブラックホール、ワームホールなどについて、宇宙の起源や構造から分かりやすく解説してくれたからだ。それまでの永遠不変の定常宇宙論から、宇宙の起源そのモノが、超劇的でSFチックなことを理解させてくれた。
 さらに驚かされたのが「宇宙の創造に神の手は必要としない!」との文章。私は「何をワザワザそんな分かりきったことを」的な感想だった。宗教とは心の問題で、本気で聖書の天地創造を信じているヒトなどいるワケはないと日本人的感覚で思っていたのだ。
 それが欧米のキリスト教世界では、いまだに神の実在を信じて疑わない人々や分かっていながら大っぴらには言えない社会風土が厳然と存在していて、最先端の科学者でも宇宙の起源について、神を否定することがはばかられる状態。それをホーキング博士は、多数の著作の中で繰り返し、宇宙の起源やさまざまな物理現象における神の介在を否定。キリスト教会からは無神論者として非難され続けた。
 彼は次第に物理学とは関係なく、神の否定論者になり、遺作の「大きな疑問への簡潔な答え」の第一章では「神は存在しない。宇宙をつかさどる者はいない。天国も地獄もなく、人は死ねばゴミになる!」と断言している。これも彼の偉大な業績だ。
 ■阿部亮 北海道札幌西高等学校卒業。19歳で陸路を世界一周。ニッポン放送「阿部亮のNGO世界一周!」のメインパーソナリティ。ミャンマー、ネパール、カンボジア、ブルキナファソ(西アフリカ)に12校の学校を建設している。http://www.zakzak.co.jp/lif/news/181121/lif1811210003-n1.html

ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本


再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算

表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:



再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)

まず基本語をウイキペデアで確認して置こう:

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9

アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%

非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。



ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。

ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。

この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。

ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。

何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。

もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。

そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。

ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。

この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。

平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。

一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。

ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。

                                     

以上



上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。

この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。

ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。

以 上


Matrices and Division by Zero z/0 = 0


再生核研究所声明309(2016.06.28) 真無限と破壊 ― ゼロ除算
3辺の長さをa,b,cとする三角形を考える。その位置で、例えば、1辺bをどんどんのばしていく。一方向でも、双方向でも良い。どこまでも、どこまでも伸ばしていくとどうなるであろうか。bは限りなく長くなるが、結局、辺bは a, cの交点Bと平行な直線になって、 それ以上伸ばすことや長くすることはできないことに気づくだろう。正方向だけに伸びれば、辺cは辺bの方向と平行な半曲線に、負の方向に伸びれば、同様に辺aもBを通るbの方向と平行な半曲線になる。いずれの場合にも、bはそれ以上伸びないと言う意味で真無限の長さと表現できるだろう。もちろん、有限の長さではない。大事な観点は、ある意味で、もはやそれ以上伸びない、大きくならないという意味で、限りがあるとも言える無限である。
途中で作られる三角形の面積は辺cをどんどん伸ばしていくと、どんどん増加し、従来の数学では、面積は無限に発散すると表現してきた。平行線で囲まれる(?)面積、あるいは、平行線で囲まれる(?)部分を切った部分(一方向に辺cを伸ばした場合)は面積無限であると考えるだろう。ところがゼロ除算は、それらの面積はゼロであると述べている。 一般に、長さcをどんどん大きくしていくと、幾らでも大きくなって行くのに対して、真無限に至れば突然ゼロになるという結果がゼロ除算の大事な帰結である。 この現象は関数y=1/x の様子をxが正方向からゼロに近づいた状況を考えれば、理解できるだろう。 1/0=0 である。― c を無限に近づけた状況を知るには、1/c の原点での状況を見れば良い。
実に美しいことには、上記三角形の面積の状況は、3直線で囲まれた部分の面積を3直線を表す方程式で書いて、ゼロ除算の性質を用いると、解析幾何学的にも導かれるという事実である。ゼロ除算の結果を用いると、解析幾何学的に証明されるという事実である。
この事実は普遍的な現象として破壊現象の表現として述べられる。直方体の体積でも、1辺を真無限まで伸ばせば、体積はゼロである。円柱でも真無限まで伸ばせば、体積はゼロである。真無限まで行けば、もともとの形が壊れているためと自然に理解できるだろう。
円や球の場合にも、半径が真無限まで行けば、半平面や半空間になるから、同じように面積や体積がゼロになる。これらは、ゼロ除算と解析幾何学からも導かれ、ゼロ除算は基本的な数学であることが分かる。このことは、空間は、限りなく大きなものではないということをも述べていて、 楽しい。

以 上
再生核研究所声明463 (2018.11.19):  ゼロ除算を理解すると 世の中に対して どのようなメリットがあるでしょうか。 ― 回答

一般の方から寄せられた率直な質問です。 多くの人が数学者はどのような社会貢献をしているのか疑問に思っているような状況が広くあるのでは ないかと考えられます。
教育における数学の貢献、自然科学における数学の貢献は歴然ですが、研究成果の社会貢献になると、難し過ぎ、抽象的すぎ、細かすぎ、分からない、どうでも良いと思われることにハマっている。 それ以前に全然わからないというような印象が あるのでは ないでしょうか。
ゼロ除算についての上記のようなご質問に対して、率直に真正面から回答してみたい。
ゼロ除算の理解は、小学生でも十分に分かる内容ですが、神秘的な歴史を有していて、ゼロ除算不可能は アリストテレスに遡り、数学的にも算術の確立者 Brahmagupta (598 -668 ?) 以来の問題であると言えます。 また物理学上の問題から、アインシュタインの人生最大の関心事であったと言われています。天才オイラーの間違いなどともいわれるように 多くの天才的な数学者が関与して来ています。インド人の永い苦しみの様も 最近詳しく報告され、現代に至っても奇怪な理論が、見解が インターネット上を賑わしています。

ところが、ゼロ除算の本質は、簡単で明らかですが、それでも発見後4年を経ても 世の理解は 十分とは言えません。 これらの事情を見て、まずは、ゼロ除算は、人間の愚かさ思い込んだら変えられない独断と偏見に満ちた存在であることを 良く教えてくれる。 このことが ゼロ除算を理解する最大の、メリットであると考えられます。 簡単なことが 天才たちでさえ 既成概念にとらわれて 理解できず、解明できなかった 歴史の重い事実です。 数学界から 不可能の烙印を押され、それはまるで絶対的な命題であるように受け止められ 疑うことをせず、その壁を乗り越えられなかった 事実です。 事実は 本当に簡単な事でした。
インド人たちの永い間の努力と 現在でも 自分の考えに囚われて 新しい事実を受け入れられない人たちが相当いる。 マインドコントロールという言葉がはやったことがありますが、 すっかりはまっていて 抜けられない姿を 結構広く見ることが できます。数学者がかえって古い世界にハマっていて、素人の方の方が理解しやすい状況は 結構良く見られる。あまりにも深く学習しすぎてしまったので、なかなか新しい数学に理解をしめせないようです。心が向かないようです。
ゼロ除算の理解は、人間の性(さが)を理解するのに 貢献するでしょう。
ゼロ除算は、数学的には、 真っすぐに立った電柱の勾配がゼロであること y軸の勾配がゼロであることを示すので、勾配の考えに新しい感覚と世界観をもたらしますが、その背後にはアリストテレス、ユークリッド以来の世界観の変更、初等数学全般の変更を要求する基本的な理論、数学が存在します。 - 素人に聞くと相当多くの人が真っすぐに立った電柱の勾配はゼロであると回答されることは 驚きです。しかし、数学では考えられないとなっている変な状況です。 -  しかしながら、一般の人たちが学んで楽しく、感銘するものを探せば、それはどのようなものかと考える。 数学を超えたような影響の視点です。 - 平面をどんどん遠ざかっていくとどうなるかを考えると、無限遠点に至ると考えられますが、ゼロ除算の結果 無限の彼方は 実は始めの原点に一致していることが分かった。
― この表現ではまるで宗教的、哲学的な視点であると理解されるだろうことは、 良く分かります。 - 実際、これは誤解であるが ゼロ除算は宗教的だ、 哲学的だと印象を述べた数学者が結構いる。 しかし、立体射影の考えを参照されれば、簡単に数学として、その意味を捉えることができます。 ゼロと無限大のある意味での一致の発見が ゼロ除算の拓いた新世界の事実です。 ゼロと無限大はいろいろ似たような性質が有りましたが、その関係が露わにされてきた。 意味が明らかになってきた。
ゼロと無限大の一致は 世界観に大きな影響を与えました。はじめと終わりの一致、両極端の一致と普遍化すると新しい世界が見えてくるのではないだろうか。実際、衝撃が永く続き新しい世界が見えて来るように感じられました。ゼロ除算発見以前の世界と、発見後の世界では 相当に変化してきて、賢くなってきた、世の中が良く見えるようになってきたような感覚を懐いています。 このような衝撃を感じられれば、ゼロ除算の大きな一般的な貢献と言えると思います。 天動説を変えて地動説を受け入れたような大きな変化です。
ゼロ除算は、考え方の変更で 多くの誤解をするが、それ故に数学的な考え方や、 発想の仕方で、数学的な論理とは何か。 考え方の仕方などで、大いに修行、訓練になると考えられる。 できないとされていたことが、できるようになった発想の仕方は、非常に教訓的で感銘を受けるのでは ないだろうか。 ― 全く思いがけないことが起きて、それが真実であった。 その衝撃です。
物理的な連続性の概念はアリストテレスによって主張され、欧米の文明に甚大な影響を与えたとされるが、ゼロ除算で現れた強力な不連続性の概念は、沢山の驚くような具体例を明らかにしているが、 不連続性の考えは、今後 新しい世界観としてどんどん広まっていくと考えられる。 基本的な例をしっかり理解することによって、新世界の現象をどんどん発見し、理解が進むだろう。 ゼロ除算の拓いた世界は、実際、 新しい数学、世界であると言える。 - 実際、できないとされていたことが できるようになったというのだから、新しい世界が拓かれたと言える。しかも、それは 算術の基本に関わる変更である。
次も参照:
再生核研究所声明 455(2018.10.9):   ゼロ除算は幾らの価値がありますか、人間をどう救うのですか
― 回答
(一部)除算の発見とその理解は、人間精神の開放 に寄与するでしょう。まずは、人間が、予断と偏見に満ち、盲目的で 単細胞的な存在 であることを教えてくれるでしょう。これは哲学の祖、ソクラテスの言葉 汝みずからを知れ という、深い問いを思い起させるでしょう。 ゼロ除算の理解は 人間精神の開放 に大きく寄与するだろう。それは、人間を救う と表現しても過言ではないと 言える。 ゼロ除算算法の結果、人生図形 というグラフを得たが、それは、人生とは如何なるものか 良く表現していて、実際 悟りの心 にも大きく貢献するだろう。 ゼロ除算算法のない世界は、実際、未だ未明の時代、野蛮な時代 と言える。 新世界は 既に見えている。 次も参照:
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館(2018年9月8日―24日 )

以 上
神の数式:
神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。
物理学者如何でしょうか。

 https://plaza.jp.rakuten-static.com/img/user/diary/new.gif
カテゴリ:カテゴリ未分類
​そこで、計算機は何時、1/0=0 ができるようになるでしょうか。 楽しみにしています。 もうできる進化した 計算機をお持ちの方は おられないですね。
これは凄い、面白い事件では? 計算機が人間を超えている 例では?

面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 世界史の恥。 実は a/0=0 が 何時も成り立っていた。 しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている 様が 出て居て 実に 面白い。
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23
カテゴリ:カテゴリ未分類
面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 実は a/0=0 が 何時も成り立っていた。しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている様が 出て居て 実に面白い。

 
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23

ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a  割る b のことで、これは 方程式 x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:

最近、3つの事が在りました。

私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。

これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1.      ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2.      可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3.      ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4.      深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.



Eπi =-1 (1748)(Leonhard Euler)
1/0=0/0=0 (2014年2月2日再生核研究所)


1+1=2  (      )
a2+b2=c2 (Pythagoras)
1/0=0/0=0(2014年2月2日再生核研究所)

0 件のコメント:

コメントを投稿