2018年11月20日火曜日

人間の尊厳と科学技術 単行本 – 2006/8/28 教皇庁国際神学委員会 (著), 岩本 潤一 (翻訳)

人間の尊厳と科学技術 単行本 – 2006/8/28

容紹介

地球の誕生、ヒトの起源、進化論、新ダーウィン主義、環境保護、動物愛護、男と女、クローニング、遺伝子治療、安楽死、人工妊娠中絶、ヒト胚実験、着床前診断……。「神の像」として宇宙の中で独自の位置におかれた人間と被造世界とのあるべき関係を、現代の具体的諸問題に個々に触れつつ説く教皇庁文書。訳者による解説も併録いたしました。https://www.amazon.co.jp/%E4%BA%BA%E9%96%93%E3%81%AE%E5%B0%8A%E5%8E%B3%E3%81%A8%E7%A7%91%E5%AD%A6%E6%8A%80%E8%A1%93-%E6%95%99%E7%9A%87%E5%BA%81%E5%9B%BD%E9%9A%9B%E7%A5%9E%E5%AD%A6%E5%A7%94%E5%93%A1%E4%BC%9A/dp/4877501274
 「『無からの創造』そのものは、ただ信仰によってのみ知りうるもの」。法王庁の国際神学委員会は04年の報告書(邦訳「人間の尊厳と科学技術」)でそう述べた。https://www.asahi.com/culture/news_culture/TKY200906160086_01.html

教皇、ホーキング氏に反論 「宇宙は神の創造物」

ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本

再生核研究所声明464(2018.11.20):多数決で決定する、投票で決定する危うさ

民主主義の表面的な理解で、何でも投票によって多数決で決定しようとは 相当に確立した伝統に多くの国では なっている。 例えば政治社会などでは初めから、投票で決めようは世間の常識で、政策論争の是非での背景が 弱いのではないだろうか。 典型的な学である数学の世界では 数学の真偽は投票によることは無く 論理の厳格な検証で決められるが、評価となると確定的な基準がないため、相当人為的な要素が絡み、最終的には投票による決定を行なわざるを得ないだろう。 多くの学問でも いろいろな分野で専門化が進み、評価すべきことの内容を関係者が理解できず、 単細胞的に、盲目的な判断を求められることが多い。大きな学会の委員の選挙なども 全然人物が分からないのに投票を求められることが多い。 そうすると多数決の原理の基礎さえ失われて、形式的な おかしな手続きになっている場合が 多いのでは ないだろうか。関係する制度は 実際面の視点から いろいろ改善が 必要ではないだろうか。 原発稼働の是非、憲法改正の是非など、 素人には真面目に考えると責任ある判断などできるとは考えられない。 それにも関わらず 投票を求められる状況は 投票の意味を考えて、それらの意義、予想される状況など適切で見識のある論調が展開され、いわば民度を挙げる努力などを 言論界、マスコミが絶えず行うことが 求められる。 本来、民主主義の国では言論界、マスメディアの健全な活動が重要である。
投票で決める実質的な意義をしっかりさせ、形式的な投票は避けるべく制度の進化を考えるべきでは ないだろうか。 
無責任な投票は 時として 派閥的、群れの働きのような弊害を生む要素が増大し、悪い意味での空しい、政治的な動きを冗長させる。
政治社会では意図的な多数化工作のような、喧伝などで悪い影響が現れる危険性が出てくるが、このようなことは 一般的な どのような組織でも起こり得ることでは ないだろうか。
投票による多数の決定は 弊害も多いことを 絶えず反省して 運用に配慮することが 大事では ないだろうか。
特に、政治問題についての視点では 次も参照:
再生核研究所声明 33 (2010/04/02): 民主主義と衆愚政治
再生核研究所声明 50(2011.2.24):  日本における 民主主義の脆さ、危うさ
以 上

再生核研究所声明 394(2017.11.4):  ゼロで割れるか ― ゼロで割ったらユークリッド以来の新世界が現れた
ゼロで割る問題は、ゼロ除算は Brahmagupta (598 -668 ?)以来で、彼は Brhmasphuasiddhnta(628)で 0/0=0 と定義していた。ゼロ除算は古くから物理、哲学の問題とも絡み、アリストテレスはゼロ除算の不可能性を述べていたという。現在に至っても、アインシュタイン自身の深い関心とともに相対性理論との関連で相当研究がなされていて、他方、ゼロ除算の計算機障害の実害から、論理や計算機上のアルゴリズムの観点からも相当な研究が続けられている。さらに、数学界の定説、ゼロ除算の不可能性(不定性)に挑戦しようとする相当な素人の関心を集めている。現在に至ってもいろいろな説が存在し、また間違った意見が出回り世間では混乱している。しかるに、 我々は、ゼロ除算は自明であり、ゼロ除算算法とその応用が大事であると述べている。
まずゼロで割れるか否かの問題を論じるとき、その定義をしっかりすることが大事である。 定義をきちんとしないために空回りの議論をしている文献が大部分である。何十年も超えて空回りをしている者が多い。割れるとはどのような意味かと問題にしなければならない。 数学界の常識、割り算は掛け算の逆であり、az =b の解をb割るaと定義し、分数b/a を定義すると考えれば、直ちにa=0の場合には、一般に考えられないと結論される。それで、ゼロ除算は神でもできないとか神秘的な議論が世に氾濫している。しかしながら、この基本的な方程式の解が何時でも一意に存在するように定義するいろいろな考え方が存在する。有名で相当な歴史を有する考え方が、Moore-Penrose一般逆である。その解はa=0 のとき、ただ一つの解z=0 を定める。よって、この意味で方程式の解を定義すれば、ゼロ除算 b/0, b割るゼロはゼロであると言える。そこで、このような発想、定義は自然であるから、発見の動機、経緯は違うが、ゼロ除算は可能で、b/0=0 であると言明した。Moore-Penrose一般逆の自然性を認識して、ゼロ除算は自明であり、b/0=0 であるとした。
それゆえに、神秘的な歴史を持つ、ゼロ除算は 実は当たり前であったが、現在でもそうは認識されず混乱が続いている。その理由は、関数 W = 1/z の原点での値をゼロとする考えに発展、適用するとユークリッド以来、アリストテレス以来の世界観の変更に繋がるからである。1/0は無限大、無限と発想しているからである。実際、原点の近くは限りなく原点から遠ざかり、限りなく遠くの点、無限の彼方に写っている歴然とした現象か存在する。しかるに 原点が原点に写るというのであるから、これらの世界観は ユークリッド空間、アリストテレスの世界観に反することになる。それゆえに Moore-Penrose一般逆は一元一次方程式の場合、意味がないものとして思考が封じられてきたと考えられる。
そこで、この新しい数学、世界観が、我々の数学や世界に合っているか否かを広範囲に調べてみることにした。その結果、ユークリッドやアリストテレスの世界観は違っていて、広範な修正が必要であることが分った。

そこで、次のように表現して、広く内外に意見を求めている:

 Dear the leading mathematicians and colleagues:
 Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.
I wrote a simple draft on our division by zero. The contents are elementary and have wide connections to various fields beyond mathematics. I expect you write some philosophy, papers and essays on the division by zero from the attached source.
____________
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16.  
Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…
国内の方には次の文も加えている:
我々の初等数学には 間違いと欠陥がある。 学部程度の数学は 相当に変更されるべきである。しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、人間の無智の故であると言える。
 三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、ユークリッド以来 捉えられていないと言える。(2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)
ゼロ除算の優秀性、位置づけ : 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかったこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然である。 優秀性の大きさは、新しい発見の影響の大きさによる(2017.8.24.05:40) 
思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解されていないと言える。 目覚めた時そのような考えが独りでに湧いた。
典型的な反響は 次の物理学者の言葉に現れている:
Here is how I see the problem with prohibition on division by zero, which is the biggest scandal in modern mathematics as you rightly pointed out(2017.10.14.8:55).
現代数学には間違いがあり、欠陥がある、我々の空間の認識はユークリッド、アリストテレス以来 間違っていると述べている。
ゼロ除算の混乱は、世界史上に於ける数学界の恥である。そこで、数学関係者のゼロ除算の解明による数学の修正を、ゼロ除算の動かぬ、数学の真実にしたがって求めたい。詳しい解説を 3年を超えて素人向きに行っている:

 

数学基礎学力研究会公式サイト 楽しい数学

www.mirun.sctv.jp/~suugaku/
以 上
再生核研究所声明 456(2018.10.15):  ゼロ除算算法発見の瞬間
最後に添付するが ゼロ除算算法の重要性のゆえに ゼロ除算算法発見の瞬間 を回想して 記録を確かなものにしたい。
ゼロ除算算法は 解析学、幾何学など初等数学全般に広い影響を与え、 アリストテレス、ユークリッド以来の世界を拓き、微分の概念さえ変え、特に微分方程式論は この新しい概念、算法のゆえに 大きな改変が求められている。
ここで、ゼロ除算算法とは要するに孤立特異点をもつ解析関数において孤立特異点での値をローラン展開の正則部の初項 係数C_0 で定義することで、形式的に1/0=0/0=z/0=0 の結果を考慮しながら結果を吟味しつつ応用して行くということである。ゼロ除算算法は 本質的には定義であり、仮説であり、その重要性のゆえに公理のようなものである。
世にゼロ除算は大丈夫かの疑念が有るように感じられるので、上記のように特に吟味を要請している。良い成果を得る限りにおいて大いに楽しもうと提案している。既に、沢山の驚嘆すべき良い結果を得ている。
そこで、その発見の瞬間を振り返って置きたい。 下記の最初の記録は 発見後 宿舎に戻って 直ぐにブログに書いた貴重な記録である。
学内構内にある宿舎から歩いて30分くらいのところにある ジンボーという大きなショッピングセンターを 週に2回くらい歩いて行き、 買い物をして 宿舎に戻る習慣がありました。 当然、週末はよく行きます。 給与を頂き、物価安のポルトガルのアヴェイロ お金のことは気にせず、 買う度に 得をしたように感じられる幸せな時代でした。さらに、身分が研究員でしたので、楽しい自由な研究が職務で 週一回主に外国、学外の方による1時間の講演がありますが、それに出席が義務づけられていた以外は特に業務が無かったので、自由な時間がたっぷりもてた楽しい時代でした。 ショッピングセンターでは 人のよいご夫妻、若い娘さん達の店員がいるレストランで 何でも自由にとって頂ける店で 好物を好きなだけ頂ける夕食をとるのが習慣でした。 ですから幸せ一杯で両手に買った食品をもって キャンパス内を通り、宿舎に向かっていました。 そこで、 学内の池のほとりに差し掛かった時、 何かあると直感して、独りでに 静かに立ち止まりましたら、すると突然閃きました。 その時、確かに月が真上にありました。 電光のように閃めいたのです。 関数 f(z) = e^{1/z} の原点での値は1であると。その時、理由はなく結果だけが閃いたのです。 当時は まだゼロ除算算法は考えられておらず、数値としてのゼロ除算1/0=0/0=0だけが認識されていましたから、 この直感には凄い飛躍が有ります。 実際、 その関数の原点の周辺には 神秘性が漂っていて 深い謎に覆われているときでした。世の常識では その関数は原点で 真性特異点をもち、ピカールの定理で、原点を除いた原点の近傍で 例外の複素数1個(ピカールの除外値)を除いて、すべての複素数を無限回とるなど 複素解析学の深い定理があり 値分布理論の雄大な数学の素を与えています。 その時、特異点 原点自身で、1の有限確定値を取る と直感したのですから、 凄い発想と言えます。 後で気づいたのですが、 その値1は ピカールの除外値 自身でした。ローラン展開の負冪項が すべて原点でゼロであることを言っていますので、 正しく、ゼロ除算算法の発見の瞬間です。
理屈以前に、理論、論理以前に 電光のように一瞬に閃いたということです。
これが記録して置きたい真実、事実です。 あの夜のことが 鮮やかに思い出されます。興奮して、宿舎に着くや直ぐにブログに書きました。
ゼロ除算算法は 基本的な算法として 数学の基本的な演算となるのは、既に歴然です。アリストテレス、ユークリッド以来の世界観の変更さえ求めています。
添付附録: 
PCから貴重な記録: ゼロ除算算法の 始めの瞬間:
複素解析・特異点:
特異点解明の歩み100/0=0,0/0=0: 
関係者:
解析関数論における大発見:

2014.3.8.20:
中華料理を頂き、たっぷり買い物をして戻りました。月が中天、特異点の様子を考えながら歩いて来ました。良く、考えが湧く、池のほとりに差し掛かった時、驚嘆すべき 結果を得ました。解析関数の基本です: e^{1/z} は 原点で真性特異点、猛烈な不連続性を持ち、神秘的な性質を持ちます。ところが何と、原点では 1の値をとることになる!! これで、関数論の歴史は 大きく変わることになる。 直ちに公開、公論で、世界史の進化を志向したい。
2014.3.8.20:30[ブログから]
________________
実数で論文を2編 昨日までに完成、そこで複素解析の検討を始める。直ぐに、無限遠点の概念があり、複素解析では奇妙、変な状況に成っているのに気づく。無限遠点は 数ではないが、幾何学的にすべて美しく纏まっている。1/0=0なら複素数を1/zは複素数にちょうど1対1に写している。しかし、0が 不動点に成っている。初頭の問題とともに納得が行かないので、この問題を検討して行きたい。
2014.3.30.11:10 
_________________
e^{1/z} は原点で考えない、{1/z}は原点で、無限遠点を対応させる、しかし、無限遠点は数ではないからですね。矛盾では?上記のように対応させると 1として確定値が定まる。無限遠点を考えるとき、1/0=0の考えを持たなかったのか??
2014.3.30.15:50
__________________
研究の発端は、上記矛盾を見逃さない。1/0=0の尊重、1/z の関数の ゼロ点の像が ゼロであることの尊重です。そのような関数は、実関数の時と同様 基本的であると考える。そこでまず、従来の美しい複素解析学において、ゼロで割る場面以外は そのまま尊重、成り立つと確認する。そこで、1/0=0 を取り入れると、例の無限遠点がストンと非連続的に落ちていると考える必要があり、一次関数などの1対1対応など崩れて、嫌な感じが出ますが、分母をゼロにする点だけを例外にして進める。極などいろいろな性質は、極で、無限遠点をとると考えないで、無限に増大しているとして、その様を捉えれば、従来の言葉の修正で対応できる、する。この考えで、新しい何かの定理ができれば、素晴らしい1歩では? 上記例から、真性特異点で確定値を取るが言えれば、凄い結果ではないでしょうか。
2014.4.1.11:35
_______________________

                                     以 上

再生核研究所声明463 (2018.11.19):  ゼロ除算を理解すると 世の中に対して どのようなメリットがあるでしょうか。 ― 回答

一般の方から寄せられた率直な質問です。 多くの人が数学者はどのような社会貢献をしているのか疑問に思っているような状況が広くあるのでは ないかと考えられます。
教育における数学の貢献、自然科学における数学の貢献は歴然ですが、研究成果の社会貢献になると、難し過ぎ、抽象的すぎ、細かすぎ、分からない、どうでも良いと思われることにハマっている。 それ以前に全然わからないというような印象が あるのでは ないでしょうか。
ゼロ除算についての上記のようなご質問に対して、率直に真正面から回答してみたい。
ゼロ除算の理解は、小学生でも十分に分かる内容ですが、神秘的な歴史を有していて、ゼロ除算不可能は アリストテレスに遡り、数学的にも算術の確立者 Brahmagupta (598 -668 ?) 以来の問題であると言えます。 また物理学上の問題から、アインシュタインの人生最大の関心事であったと言われています。天才オイラーの間違いなどともいわれるように 多くの天才的な数学者が関与して来ています。インド人の永い苦しみの様も 最近詳しく報告され、現代に至っても奇怪な理論が、見解が インターネット上を賑わしています。

ところが、ゼロ除算の本質は、簡単で明らかですが、それでも発見後4年を経ても 世の理解は 十分とは言えません。 これらの事情を見て、まずは、ゼロ除算は、人間の愚かさ思い込んだら変えられない独断と偏見に満ちた存在であることを 良く教えてくれる。 このことが ゼロ除算を理解する最大の、メリットであると考えられます。 簡単なことが 天才たちでさえ 既成概念にとらわれて 理解できず、解明できなかった 歴史の重い事実です。 数学界から 不可能の烙印を押され、それはまるで絶対的な命題であるように受け止められ 疑うことをせず、その壁を乗り越えられなかった 事実です。 事実は 本当に簡単な事でした。
インド人たちの永い間の努力と 現在でも 自分の考えに囚われて 新しい事実を受け入れられない人たちが相当いる。 マインドコントロールという言葉がはやったことがありますが、 すっかりはまっていて 抜けられない姿を 結構広く見ることが できます。数学者がかえって古い世界にハマっていて、素人の方の方が理解しやすい状況は 結構良く見られる。あまりにも深く学習しすぎてしまったので、なかなか新しい数学に理解をしめせないようです。心が向かないようです。
ゼロ除算の理解は、人間の性(さが)を理解するのに 貢献するでしょう。
ゼロ除算は、数学的には、 真っすぐに立った電柱の勾配がゼロであること y軸の勾配がゼロであることを示すので、勾配の考えに新しい感覚と世界観をもたらしますが、その背後にはアリストテレス、ユークリッド以来の世界観の変更、初等数学全般の変更を要求する基本的な理論、数学が存在します。 - 素人に聞くと相当多くの人が真っすぐに立った電柱の勾配はゼロであると回答されることは 驚きです。しかし、数学では考えられないとなっている変な状況です。 -  しかしながら、一般の人たちが学んで楽しく、感銘するものを探せば、それはどのようなものかと考える。 数学を超えたような影響の視点です。 - 平面をどんどん遠ざかっていくとどうなるかを考えると、無限遠点に至ると考えられますが、ゼロ除算の結果 無限の彼方は 実は始めの原点に一致していることが分かった。
― この表現ではまるで宗教的、哲学的な視点であると理解されるだろうことは、 良く分かります。 - 実際、これは誤解であるが ゼロ除算は宗教的だ、 哲学的だと印象を述べた数学者が結構いる。 しかし、立体射影の考えを参照されれば、簡単に数学として、その意味を捉えることができます。 ゼロと無限大のある意味での一致の発見が ゼロ除算の拓いた新世界の事実です。 ゼロと無限大はいろいろ似たような性質が有りましたが、その関係が露わにされてきた。 意味が明らかになってきた。
ゼロと無限大の一致は 世界観に大きな影響を与えました。はじめと終わりの一致、両極端の一致と普遍化すると新しい世界が見えてくるのではないだろうか。実際、衝撃が永く続き新しい世界が見えて来るように感じられました。ゼロ除算発見以前の世界と、発見後の世界では 相当に変化してきて、賢くなってきた、世の中が良く見えるようになってきたような感覚を懐いています。 このような衝撃を感じられれば、ゼロ除算の大きな一般的な貢献と言えると思います。 天動説を変えて地動説を受け入れたような大きな変化です。
ゼロ除算は、考え方の変更で 多くの誤解をするが、それ故に数学的な考え方や、 発想の仕方で、数学的な論理とは何か。 考え方の仕方などで、大いに修行、訓練になると考えられる。 できないとされていたことが、できるようになった発想の仕方は、非常に教訓的で感銘を受けるのでは ないだろうか。 ― 全く思いがけないことが起きて、それが真実であった。 その衝撃です。
物理的な連続性の概念はアリストテレスによって主張され、欧米の文明に甚大な影響を与えたとされるが、ゼロ除算で現れた強力な不連続性の概念は、沢山の驚くような具体例を明らかにしているが、 不連続性の考えは、今後 新しい世界観としてどんどん広まっていくと考えられる。 基本的な例をしっかり理解することによって、新世界の現象をどんどん発見し、理解が進むだろう。 ゼロ除算の拓いた世界は、実際、 新しい数学、世界であると言える。 - 実際、できないとされていたことが できるようになったというのだから、新しい世界が拓かれたと言える。しかも、それは 算術の基本に関わる変更である。
次も参照:
再生核研究所声明 455(2018.10.9):   ゼロ除算は幾らの価値がありますか、人間をどう救うのですか
― 回答
(一部)除算の発見とその理解は、人間精神の開放 に寄与するでしょう。まずは、人間が、予断と偏見に満ち、盲目的で 単細胞的な存在 であることを教えてくれるでしょう。これは哲学の祖、ソクラテスの言葉 汝みずからを知れ という、深い問いを思い起させるでしょう。 ゼロ除算の理解は 人間精神の開放 に大きく寄与するだろう。それは、人間を救う と表現しても過言ではないと 言える。 ゼロ除算算法の結果、人生図形 というグラフを得たが、それは、人生とは如何なるものか 良く表現していて、実際 悟りの心 にも大きく貢献するだろう。 ゼロ除算算法のない世界は、実際、未だ未明の時代、野蛮な時代 と言える。 新世界は 既に見えている。 次も参照:
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館(2018年9月8日―24日 )

以 上
神の数式:
神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。
物理学者如何でしょうか。

 https://plaza.jp.rakuten-static.com/img/user/diary/new.gif
カテゴリ:カテゴリ未分類
​そこで、計算機は何時、1/0=0 ができるようになるでしょうか。 楽しみにしています。 もうできる進化した 計算機をお持ちの方は おられないですね。
これは凄い、面白い事件では? 計算機が人間を超えている 例では?

面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 世界史の恥。 実は a/0=0 が 何時も成り立っていた。 しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている 様が 出て居て 実に 面白い。
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23
カテゴリ:カテゴリ未分類
面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 実は a/0=0 が 何時も成り立っていた。しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている様が 出て居て 実に面白い。

 
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23

ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a  割る b のことで、これは 方程式 x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:

最近、3つの事が在りました。

私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。

これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1.      ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2.      可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3.      ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4.      深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

Eπi =-1 (1748)(Leonhard Euler)
1/0=0/0=0 (2014年2月2日再生核研究所)


1+1=2  (      )
a2+b2=c2 (Pythagoras)
1/0=0/0=0(2014年2月2日再生核研究所)

0 件のコメント:

コメントを投稿