ノーベル賞受賞者の論文ですらランクインしない「世界で最も引用された論文トップ100」
先行研究は、その研究成果がいかに重要なものかということだけではなく、他の論文にどれだけ多く引用されるものかという点も重要なポイントです。これは、引用論文の数の多さがノーベル賞の選考時に考慮されることからも伺うことができます。そんな数多くの研究者に引用された論文トップ100について、科学誌Natureがインフォグラフィックで紹介しています。
The top 100 papers
http://www.nature.com/news/the-top-100-papers-1.16224
「超伝導体の発見」「DNAの二重らせん構造の発見」「宇宙の加速的な膨張の発見」などの画期的な研究成果は、世界的に高い評価を得ていずれも研究者にノーベル賞が授与されています。しかし、Natureによると、これら3つの超有名な研究論文ですら、「世界で最も引用された研究論文トップ100」にはランクインしていないとのこと。
世界中の学術論文をアーカイブするトムソン・ロイターの協力を得て、Natureが世界中から引用されまくった研究論文を調査しトップ100についてインフォグラフィックでまとめるとこうなります。
◆第1位:(PDFファイル)Protein measurement with the folin phenol reagent.(Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J.)
史上最も引用された論文は、ローリー法として知られるタンパク質の質量分析法を発表した1951年のオリバー・ローリーらの論文(ローリー論文)で、引用された回数は30万5148回と驚異的な数値。年度別の引用数を示したこのグラフから、この論文が1980年代をピークに多数の論文に引用され、近年再び引用される回数が増えていることが分かります。
トップ100の論文を引用回数順に並べ分野別に色分けしたグラフ。biology lab technique(生物学の実験手法)の分野が上位を占めている事がよく分かります。そして、第1位のローリー論文の引用回数が断トツであることがよく分かります。
なお、ソースページのインフォグラフィックの右上の「<」「>」アイコンをクリックすると第1位から第100位までのグラフを閲覧できるようになっています。
◆第2位:Cleavage of structural proteins during the assembly of the head of bacteriophage T4.(Laemmli, U. K.)
第2位はT4ファージのタンパク質を電気泳動で分離して新種のタンパク質を発見したというウルリッヒ・レムリーの論文。研究の目的・成果そのものではなく研究の中で使われた「手法」が後々、多くの論文で引用されることになりました。
◆第3位:A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.(Bradford, M. M.)
第3位はタンパク質の濃度測定法である「ブラッドフォード法」を考案したマリオン・ブラッドフォードの1976年の論文。この論文も、近年、再び引用される回数が大きく増えるなど「復活」している様子がグラフから読み取れます。
以上のトップ3の論文が引用回数10万回オーバーと他の論文を圧倒的に引き離すほど引用されまくっている「三強」であることがグラフから分かります。
◆第13位:(PDFファイル)A short history of SHELX.(Sheldrick, G. M.)
古い論文が引用累計総数で有利であり上位には1980年以前の論文がひしめき合う中で、2008年発表という直近の論文であるにもかかわらず、第13位にランクインするという爆発的な引用のされ方なのが、コンピュータプログラム「SHELX」のこれまでの歴史について述べたジョージ・シェルドリックの論文。現在、結晶構造解析に関する論文で引用されまくっている論文です。
なお、今回のランキングを作る元データとなったロイターのリスト(エクセルファイル)はここからダウンロード可能。ちなみに、相対性理論で知られるアインシュタインやノーベル賞を2度受賞したキュリー夫人の名前をこのリストの中に見つけることはできませんでした。
「世界で最も引用された研究論文トップ100」は、世界中の論文をピラミッドに例えると頂上中の頂上と言うべき極めて希有な論文ばかりで、高さ5895メートルのキリマンジャロに例えた場合、「頂上のわずか1センチ部分に相当する」とのことで、ある意味、ノーベル賞以上にレアな存在であるようです。
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明222(2015.4.8)日本の代表的な数学として ゼロ除算の研究の推進を求める
ゼロ除算の成果は 2015.3.23 明治大学で開催された日本数学会で(プログラムは5200部印刷、インターネットで公開)、海外約200名に経過と成果の発表を予告して 正規に公開された。簡単な解説記事も約200部学会で配布された。インターネットを用いて1年以上も広く国際的に議論していて、骨格の論文も出版後1年以上も経過していることもあり、成果と経過は一応の諒解が広く得られたと考えても良いと判断される。経過などについては
日本の数学が、欧米先進国のレベルに達していることは、国際研究環境の実情を見ても広く認められる。しかしながら、初等教育から大学学部レベルの基本的な数学において 日本の貢献は 残念ながら特に見当たらないと言わざるを得ない。これは日本の数学が 大衆レベルでは 世界に貢献していないことを意味する。これについて 関孝和の微積分や行列式の発見が想起されるが、世界の数学史に具体的な影響、貢献ができなかったこともあって 関孝和の天才的な業績は 残念ながら国際的に認知されているとは言えない。
そこで、基本的なゼロ除算、すなわち、四則演算において ゼロで割れないとされてきたことが、何でもゼロで割れば ゼロであるとの基本的な結果は、世界の数学界における 日本の数学の顕著なものとして 世界に定着させる 良い題材ではないだろうか。
内容の焦点としてはまず:
ゼロ除算の発見、
道脇方式によるゼロ除算の意味付け、除算の定義、
高橋のゼロ除算の一意性、
衝突における山根の現象の解釈、
の4点が挙げられる。
6歳の道脇愛羽さんが、ゼロ除算は 除算の固有の意味から自明であると述べられていることからも分かるように、ゼロ除算は、ピタゴラスの定理を超えた基本的な結果であると考えられる。
ゼロ除算の研究の発展は 日本の代表的な数学である 佐藤の超関数の理論と密接な関係にあり(再生核研究所声明200)、他方、欧米では Aristotélēs の世界観、universe は連続である との偏見に陥っている現状がある。 最後にゼロ除算の意義 に述べられているように ゼロ除算の研究は 日本の数学として発展させる絶好の分野であると考えられる。 そこで、広く関係者に研究の推進と結果の重要性についての理解と協力を求めたい。
ゼロ除算の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0=0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。
以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
まして、10個のリンゴを0人で分けた際に、取り分 が∞個の小さな部分が取り分は、どう考えてもおかしい・・・・
受け取る人がいないわけですから、取り分は0ではないでしょうか。 すなわち何でも0で割れば、0が正しいのではないでしょうか。じゃあ聞くけど、∞個は、どれだけですか???
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでもセロであるという意外な結果が得られた。
無限遠点は存在するが、無限大という数は存在しない・・・・
天動説・・・・・・∞
地動説・・・・・・0
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html …… →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。
多くの数学で できないが、できるようになってきた経緯から述べられたものである。
Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.
After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.
Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/
明治5年(1872)
地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか? 2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/.../que.../q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
地球平面説→地球球体説 地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説:アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/.../%E3%82%A2%E3%83%AA%E3%82%B9...…
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
ゼロ除算の証明・図|ysaitoh|note(ノート)https://note.mu/ysaitoh/n/n2e5fef564997
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
地球平面説→地球球体説 地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説:アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/.../%E3%82%A2%E3%83%AA%E3%82%B9...…
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
ゼロ除算の証明・図|ysaitoh|note(ノート)https://note.mu/ysaitoh/n/n2e5fef564997
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38
Reality of the Division by Zero $z/0=0$
再生核研究所声明331(2016.11.04) 提案 ― ゼロ除算の研究は、学部卒論や修士論文の題材に適切
(雨上がり 山間部の散歩で考えが湧いた。ゼロ除算の下記論文は、新しい数学の研究課題で、学部4年生の卒論ゼミの課題、修士論文の研究課題に適切である:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China. (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016 305 pp. (Springer)
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017),
数学基礎学力研究会のホームページ
URLは
簡単に理由を纏めて置きたい。
1) 基礎知識が学部3年生程度で十分で、基本的な結果を議論でき、新しい結果を導ける余地が十分に存在する。新規で、多くの人が興味を持つ課題で国際的にも広く交流できる。
2) 内容は、永い歴史を有する世界史の問題に関わり、空間の考え、勾配、微分、接線、連続性、無限など数学の基礎概念に関与している。相対性理論、ブラックホール、ビッグバン、計算機障害などにも関係している。
3) もともと歴史的な大問題で、ゼロ除算として永い歴史と文化に関わり、広い視点が発展中の生きた数学の中に持てる。
4) 論理には厳格性、精密性、創造性が要求され、数学の精神の涵養に適切である。予断と偏見、思い込みの深さなどについて人間を知ることが出来る。
5) 基礎数学の広範な修正構想に参画でき、物理学など広い研究課題への応用が展望でき、ゼロ除算算法のような新規で基礎数学の新しい手段を身に付けることが出来る。
6) 現在数学は高度化、細分化して、永い学習期間を経て創造的な仕事に取り掛かれるのが普通であるが、ゼロ除算の研究課題では初期段階から、新しい先端の研究に取り掛かれる基礎的な広い研究領域が存在する。ゼロ除算の研究課題は、世にも稀なる夢のある研究課題であると考えられる。― アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更は かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる(再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)。
偉大なる研究は 2段階の発展でなされる という考えによれば、ゼロ除算には何か画期的な発見が大いに期待できるのではないだろうか。 その意味では 天才や超秀才による本格的な研究が期待される。純粋数学として、新しい空間の意義、ワープ現象の解明が、さらには相対性理論との関係、ゼロ除算計算機障害問題の回避など、本質的で重要な問題が存在する。 他方、新しい空間について、ユークリッド幾何学の見直し、世のいろいろな現象におけるゼロ除算の発見など、数学愛好者の趣味の研究にも良いのではないだろうか。 ゼロ除算の研究課題は、理系の多くの人が驚いて楽しめる普遍的な課題で、論文は多くの人に愛される論文と考えられる。
以 上
再生核研究所声明 430(2018.7.13): 古典的なリーマン球面に代わるHorn Torusの出現について
ロシアの若き研究者 V. Puha 氏が古典的なリーマン球面に代わる空間のモデルとしてHorn Torusを提案して来たのは 6月16日だから新世界が現れてまだ1カ月も経っていないことになる。ちょうど論文原稿の基ができたところである。ここ1カ月間声明も珍しく休んでいた事実からしても 異常に集中して興奮していた状況が良く分かる。論文も英文声明も発表するつもりであるから、ここでは一般向きに心情面での解説を行って置きたい。これは情念に突き動かされていると言える。書かなければならず、書きたい情念である。
そもそも我々の空間、平面の認識はユークリッドに始まり、現代人は一様に平面の認識を抱いていると考えられる。限りなく広がる平面と言えば、多くの人の考えは同じではないだろうか。机の上に一枚の例えばA4版の紙が置かれていれば、それを4方向に限りなく伸ばして行った平面を想像するだろう。限りなく伸ばす、それが問題である。そして、その平面上でユークリッド幾何学を考えてきた。それは2200年以上前にユークリッドが考えた空間である。その時の有名な事実は、三角形の内角の和は180度、平角である。これは平行線の一意存在性を保証するユークリッドの公理とも呼ばれている。この公理は根本的に問われ、幾何学とは何か、数学とは何かの問題を提起し、2000年を経て、平行線の公理を満たさない非ユークリッド幾何学が出現した。非ユークリッド幾何学の出現の物語は極めて感銘させるものである。便利な時代 幾らでも関係情報は手に入るから、折に触れて学んで置きたい。如何に新しい概念を得ることが困難であるかを良く示している。本当の、真の創造である。新しい概念を得る困難さである。
ところがその非ユークリッド幾何学であるが、ユークリッド幾何学に馴染んできた人々がユークリッド幾何学でない幾何学と言われれば、そんなものは想念上のもので意味がないのではないだろうかと 多くの人は 初期には発想したと考えられる。ところがしばらくすると、非ユークリッド幾何学は当たり前で、現代数学の基礎に至る所に現われ、ユークリッド幾何学などは 当たり前で、数学の実体としては 非ユークリッド幾何学が主流になっていることは 現在では相当に常識である。 ― ゼロ除算もそうなるだろう。
数学を支える解析関数の理論の基礎は、楕円型非ユークリッド幾何学で、xy平面上に置かれた球面への立体射影で、平面は球面上に1対1に写され、平面上の異なる平行線は無限遠点と呼ばれる球面上の北極点に対応する 想像上の点で交わると考えられる。平行線は無限の彼方で交わっていると発想する。立体射影の解説を参照して頂きたい。北極点と無限遠点の対応である。すると平行線は無限遠点で交わるとなって、ユークリッドの公理は成り立たない。 無限遠点を加えた拡張平面と球面は全体が1対1に全体として対応するから、極めて美しい対応関係である。立体射影は直線を円の1種と見なせば円は円に対応し、写像は交わる角を不変にするなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。 円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を1方向に行けば円をくるくる回るように、無限点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。
ところが 2014年2月2日発見したゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性を持って、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へに写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
数学的にさらに詳しく述べるのは適当でないと考える。 ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
以 上
0 件のコメント:
コメントを投稿