Matematikawan Terbesar Sepanjang Masa
views: 13.656
Matematika telah memberikan banyak dampak positif bagi kehidupan. Ilmuwan matematika pun memiliki tempat penting dalam sejarah peradaban manusia. Berikut 10 tokoh matematika terbesar yang pernah lahir di dunia.
Leonhard Euler
Hidup tahun 1707-1783, ia dianggap sebagai ahli matematika terhebat yang pernah ada di dunia. Kontribusi utamanya adalah dengan pengenalan notasi matematika termasuk konsep fungsi (dan bagaimana hal itu ditulis sebagai f (x), singkatan fungsi trigonometri, ‘e’ untuk dasar logaritma natural (The Euler Constant), huruf Yunani Sigma untuk penjumlahan dan huruf ‘/ i’ untuk unit imajiner, serta simbol pi untuk rasio dari lingkar lingkaran dengan diameternya.
Carl Friedrich Gauss
Gauss dijuluki ‘Pangeran Matematika. Dia membuat penemuan besar pertamanya ketika masih remaja, dan menulis Disquisitiones Arithmeticae yang luar biasa, magnum opus-nya, pada saat ia berusia 21 tahun. Setelah lulus pada 1798 (usia 22 tahun), ia mulai membuat beberapa kontribusi penting di bidang matematika, terutama teori nomor. Dia melanjutkan untuk membuktikan teori dasar aljabar, dan memperkenalkan gravitasi konstan Gaussian dalam fisika, serta banyak lagi – semua ini dihasilkan sebelum dia berusia 24 tahun.
G. F. Bernhard Riemann
Bernhard Riemann, lahir dari keluarga miskin pada 1826, dan kelak menjadi salah satu ahli matematika terkemuka dunia di abad ke-19. Ia memiliki berbagai teori yang melambungkan namanya, yaitu: Riemannian Geometry, Riemannian Surfaces, Riemann Integral. Yang membuatnya terkenal adalah Riemann Hypothesis yang tingkat kesulitannya melegenda, dimana mendeskripsikan sebuah masalah yang sangat kompleks pada masalah distribusi bilangan prima
Euclid
Tinggal di sekitar 300 SM, ia dianggap sebagai Bapak Geometri dengan karya magnum opus: Elements, salah satu karya terbesar dalam sejarah matematika dan digunakan dalam bidang pendidikan sampai abad ke-20. Sayangnya, sangat sedikit yang diketahui tentang hidupnya, dan apa yang ada saat ini ditulis lama setelah kematiannya. Meskipun demikian, Euclid dikenal sebagai matematikawan dengan teori dan dugaan yang disertai bukti logis serta detail. Kerangka kerja tersebut masih digunakan sampai hari ini.
Rene Descartes
Ahli matematika, fisika dan seorang filsuf Prancis, Rene Descartes terkenal karena filosofi ‘Cogito Ergo Sum’– nya. Meskipun demikian, warga negara Prancis yang hidup antara 1596-1650 ini membuat terobosan di bidang matematika. Di samping Newton dan Leibniz, Descartes membantu memberikan dasar-dasar kalkulus modern (dikembangkan oleh Newton dan Leibniz), yang dengan sendirinya memiliki pengaruh besar pada kehidupan modern saat ini.
Alan Turing
Ahli komputer dan kriptanalis Alan Turing dianggap oleh kebanyakan orang sebagai salah salah satu pemikir terbesar abad ke-20. Setelah bekerja dalam Sekolah Kode dan Sandi milik Pemerintah Inggris selama perang dunia kedua, ia membuat penemuan penting dengan menciptakan metode pemecah kode yang akhirnya akan membantu dalam memecahkan kode Enkripsi Enigma milik Jerman. Buah karyanya memengaruhi hasil dari perang, atau setidaknya dalam skala waktu.https://international.sindonews.com/read/1320067/45/matematikawan-terbesar-sepanjang-masa-1531111813/
Leonhard Euler
Hidup tahun 1707-1783, ia dianggap sebagai ahli matematika terhebat yang pernah ada di dunia. Kontribusi utamanya adalah dengan pengenalan notasi matematika termasuk konsep fungsi (dan bagaimana hal itu ditulis sebagai f (x), singkatan fungsi trigonometri, ‘e’ untuk dasar logaritma natural (The Euler Constant), huruf Yunani Sigma untuk penjumlahan dan huruf ‘/ i’ untuk unit imajiner, serta simbol pi untuk rasio dari lingkar lingkaran dengan diameternya.
Carl Friedrich Gauss
Gauss dijuluki ‘Pangeran Matematika. Dia membuat penemuan besar pertamanya ketika masih remaja, dan menulis Disquisitiones Arithmeticae yang luar biasa, magnum opus-nya, pada saat ia berusia 21 tahun. Setelah lulus pada 1798 (usia 22 tahun), ia mulai membuat beberapa kontribusi penting di bidang matematika, terutama teori nomor. Dia melanjutkan untuk membuktikan teori dasar aljabar, dan memperkenalkan gravitasi konstan Gaussian dalam fisika, serta banyak lagi – semua ini dihasilkan sebelum dia berusia 24 tahun.
G. F. Bernhard Riemann
Bernhard Riemann, lahir dari keluarga miskin pada 1826, dan kelak menjadi salah satu ahli matematika terkemuka dunia di abad ke-19. Ia memiliki berbagai teori yang melambungkan namanya, yaitu: Riemannian Geometry, Riemannian Surfaces, Riemann Integral. Yang membuatnya terkenal adalah Riemann Hypothesis yang tingkat kesulitannya melegenda, dimana mendeskripsikan sebuah masalah yang sangat kompleks pada masalah distribusi bilangan prima
Euclid
Tinggal di sekitar 300 SM, ia dianggap sebagai Bapak Geometri dengan karya magnum opus: Elements, salah satu karya terbesar dalam sejarah matematika dan digunakan dalam bidang pendidikan sampai abad ke-20. Sayangnya, sangat sedikit yang diketahui tentang hidupnya, dan apa yang ada saat ini ditulis lama setelah kematiannya. Meskipun demikian, Euclid dikenal sebagai matematikawan dengan teori dan dugaan yang disertai bukti logis serta detail. Kerangka kerja tersebut masih digunakan sampai hari ini.
Rene Descartes
Ahli matematika, fisika dan seorang filsuf Prancis, Rene Descartes terkenal karena filosofi ‘Cogito Ergo Sum’– nya. Meskipun demikian, warga negara Prancis yang hidup antara 1596-1650 ini membuat terobosan di bidang matematika. Di samping Newton dan Leibniz, Descartes membantu memberikan dasar-dasar kalkulus modern (dikembangkan oleh Newton dan Leibniz), yang dengan sendirinya memiliki pengaruh besar pada kehidupan modern saat ini.
Alan Turing
Ahli komputer dan kriptanalis Alan Turing dianggap oleh kebanyakan orang sebagai salah salah satu pemikir terbesar abad ke-20. Setelah bekerja dalam Sekolah Kode dan Sandi milik Pemerintah Inggris selama perang dunia kedua, ia membuat penemuan penting dengan menciptakan metode pemecah kode yang akhirnya akan membantu dalam memecahkan kode Enkripsi Enigma milik Jerman. Buah karyanya memengaruhi hasil dari perang, atau setidaknya dalam skala waktu.https://international.sindonews.com/read/1320067/45/matematikawan-terbesar-sepanjang-masa-1531111813/
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
https://ameblo.jp/syoshinoris/entry-12370797278.html
∞???
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
https://ameblo.jp/syoshinoris/entry-12370797278.html
再生核研究所声明 437 (2018.7.31) : ゼロ除算とは何か - 全く新しい数学、新世界である
人の生きるは真智への愛にある。 真智とは神の意志のことである。その素は情念にある。要するに事実、真実を知りたいという 心の底から湧いて来る情熱である。
ゼロ除算とは、ゼロで割ることを考えることであるが、割る意味を常識的に掛け算の逆として、0 掛ける x が a の方程式の解と考えれば、そのような解はa がゼロでなければ解が存在しないことが直ちに証明されてしまう。 ゆえにゼロ除算は不可能であるとなってしまう。 ところが算術の確立者が1300年も前に、既にゼロ除算を考え、さらに物理的な観点からアリストテレスがゼロ除算は不可能であると考察を行っているという。しかしながら、Einstein や多くの物理学者や 計算機関係者によってゼロ除算は考えられて来て 永い神秘的な歴史をたどっている。物理学の基本方程式にゼロ分のが現れて その時の意味が問題になり、他方、計算機がゼロ除算に遭うと計算機障害を起こすので、計算機障害を回避したいという動機もある。また、不可能であると言われると 何とか可能にしたいという自然な欲求が 人間の心 には存在する。 ― 実際、数学の歴史は 不可能を可能にしてきた歴史とも見られ、ゼロ除算も可能になるだろうと 予言していた数学者が存在していた。(再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること:相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ビッグバン、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。以下略)
ゼロ除算の発見には 思えば、奇妙な状況が起きている。ゼロ除算の本質は、基本的な関数y=1/x の原点での値をゼロと定義して、それを1/0=0 と書くことである。沢山の理由付けや説明の方法は発見されているが、この事実は現代数学の公理系や定理から導くことができない。しかしここから発展されるゼロ除算算法から、現代数学の広範な部分に新規な知見や結果が沢山導かれ、それらを補完しなければ現代数学は 完全とは言えず、いろいろ不備を備えていることが800件を超える具体例で示されている。論理の厳密な展開でなく本質的な説明を簡明に行いたい。ゼロ除算とは、 要するに解析関数の孤立特異点で、そこでの値をローラン展開の正則部の係数C_0 で定義して、その結果を応用するということである。- 関数 W=1/z の原点での値をゼロとする。今まで、孤立特異点で 特異点の周りで考え、孤立特異点に近づけば無限の値に近づくと考え、特異点で極をとると 表現されてきた。 この事実は当然適切で、正しいがゼロ除算では、孤立特異点自身では 固有な値C_0をとるとするのであるから、未だかつて誰も考えたことのない数学、世界であると言える。ゼロ除算の結果を1/0=0/0=\tan(\pi/2) =0 などと表現すれば、 人は それは 何だ、とても信じられない結果で、 論理を越えて そのような数学は興味も関心もないと顔をしかめて表明するだろう。しかしながら、似たような世界史上の事件を想い出したい。- 非ユ-クリッド幾何学の出現で 平行線が無限個存在する幾何学が現れたと言われれば、そのような数学は 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。
ところが具体的にいろいろ考えれば、そのような世界は当たり前に存在して、 反ってユークリッド幾何学より面白く大きな役割を有することが分かってきている。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、始めには同じように発想するだろう。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。ゼロ除算と現代数学は背反するのでは なく、 現代数学の欠陥、例外点として避けていたところを 補完して完全な数学にする性質を持っている。現代数学を完全化させる全く新しい数学が ゼロ除算である。ゼロ除算の余りに大きな影響のために ゼロ除算は数学の公理系の一つに加えられるべきものと考えられる。次も参照:
再生核研究所声明 434 (2018.7.28) : ゼロ除算の誤解と注意点
再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
以 上
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答
ゼロ除算に 興味を抱いている方の 率直な 疑念です。大きな国際会議で、感情的になって 現代の数学を破壊するもので 全く認められないと発言された方がいる。現代初等数学には基本的な欠陥があって、我々の空間の認識は ユークリッド以来の修正が求められ、初等数学全般の再構成が要求されていると述べている。それで、もちろん、慎重に 慎重に対応しているのは当然である。
本来 数学者は 論理に厳格で 数学の世界ほど 間違えの無い世界は無いと言えるのではないだろうか。 実際、一人前の数学者とは、独自の価値観を有し、論理的な間違いはしない者である と考えられているのではないだろうか。2000年を越える超古典的な数学に反した 新しい世界が現れたので、異常に慎重になり、大丈夫か大丈夫かと4年間を越えて反芻して来た(再生核研究所声明 411(2018.02.02): ゼロ除算発見4周年を迎えて)。 そこで、ゼロ除算の成果における信頼性を客観的に 疑念に対する回答として纏めて置こう。これらは、貴重な記録になると考えられる。
まず、研究成果は 3年半を越えて、広く公開している:
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/ に 関連情報を公開している。
ゼロ除算の研究は、内外の研究者に意見を求められながら共同で進め、12編を越える論文を出版確定にしている。日本数学会では6期3年間を越えて関係講演を行い、成果を発表して来た。 またその際、ゼロ除算の解説冊子(2015.1.14付け)を1000部以上広く配布して意見を求めてきたが、論理的な不備などはどこからも指摘されていない。ここ4年間海外の関係専門家と250以上のメールで議論してきた(ある人がそう述べてきた:2018年2月27日 18:45 Since then I have received about 250 messages from you about it. Unbelievable! :2018年2月27日 18:45)が 論理的な不備は指摘されなく、関係者の諒解(理解)が付いていると判断されている。逆に他の理論については 全て具体的に批判し、良くないと述べている。50カ国200名以上参加の大きな国際会議に 全体講演者として招待され、講演を行い、かつ論文がその会議禄に2編Springer社から出版される。公開していたゼロ除算の総合的な研究著書原案154ページに対して、イギリスの出版社が出版を勧め、外部審査、社内審査を終えて、著書の出版を決定している。
ゼロ除算を裏付ける知見は 初等数学全般から700件を超え、公開している。共著者として論文執筆に参加している人は、代表者以外内外8名である。
以上の状況は ゼロ除算の数学的な信用性を裏付けていると考えるが、如何であろうか。
以 上
2018.3.18.午前中 最後の講演: 日本数学会 東大駒場、函数方程式論分科会 講演書画カメラ用 原稿
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より
*057 Pinelas,S./Caraballo,T./Kloeden,P./Graef,J.(eds.): Differential and Difference Equations with Applications: ICDDEA, Amadora, 2017. (Springer Proceedings in Mathematics and Statistics, Vol. 230) May 2018 587 pp.
再生核研究所声明 418(2018.2.24): 割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
ここ2回に亘ってゼロ除算の解説を高校生、中学生向きに解説したので、今回はそれらの前に小学生などを意識して、割り算の意味とゼロ除算の意味を解説したい。
まず、割り算ですが、割り算を最初に考えたのは、アダムとイブで仲良くリンゴを2つに分けたことにあると楽しく表現した人がいます。 10個のリンゴを2人で仲良く分ければ、5個ずつ分けると丁度良いと考えますね。これは10割る2の意味で、割り算とは同じように分けることと考えられます。 10個のリンゴを3人で分ければ、3個ずつ分けると1個余りになると考えれば、10割る3は 3余り1です。 これらを 10/3 = 3 … 1 等と書き、 10を3で割ると商が3で余りは1と表現します。 少し、 難しく、50を13で割るとどうなるでしょうか。 少し考えて、50/13 = 3… 11 となります。 確かめるには、本当に分けた結果が50になるかを確認すればいいですね。 13が 3つあると 39で 11個残りと言っているので、確かに全体で50になるので、結果が正しいことが分かります。
割り算は難しいと 有名な言葉が有りますが、
― 割り算のできる人には、どんなことも難しくない。
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス(アイルランドの神学者)
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より
簡単に考える方法があります。50に13が幾つあるかを考えているので、50引く13を繰り返して、 引けるまで、引き算を 繰り返します:
50-13=27、
27-13=14、
14-13=1
1から13は引けませんから、13は3個あるとなって、割り算の商が求まります。 この手順は何時でも決まった方法で必ず答えが得られますので、分かり易く実際、感情や直感、経験、
工夫などが苦手な計算機は割り算の商を計算するときにこのようにして自動的に計算しています。繰り返し引いていくので、繰り返して除いて行きますので、割り算は除算と呼ばれ、 西欧でも中世時代そのようにして計算していたというのです。 除算の名称は素晴らしいですね。
ゼロ除算とは、ゼロで割ることを考えることですから、 50割るゼロをやって見ましょう。
50-0=50
ですから、50はゼロを引いても引いたことにはならず、50/0=0 となるのではないでしょうか?
50のところは何でも結果はゼロだということになります。 ここをそうだと言ったら、1000年や2000年を越える新しい結果であるとなりますから、 大変です。 皆さんゼロで割ってはいけないと教えられてきていて、それが現代数学の定説です。
ところが、ゼロ除算は ある自然な意味で、何でもゼロで割ればゼロであるという数学を発見して ここ4年間研究を続けていますが このような新しい考えは、 数学の基礎と私たちの空間の考えを変える必要があり、大きな影響が有ります。
そこで、次の、中学、高校生ようの解説に進むことが出来ます。
そこに、小学1年生のお友達が出てきますから、面白いですね。
再生核研究所声明 417(2018.2.21): ゼロ除算って何ですか - 中学生、高校生向き 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
前回の声明、再生核研究所声明 416(2018.2.20): ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
それ以前のこととして、今回はより基本的なことを述べたい。
12割る2は6、12割る3は4、12割る4は3、12割る6は2です。 12割る5は、商は2で余りは2で、12割る7は 商は1で余りは5です。これらを、普通、12/2=6,12/3=4,12/4=3,12/6=2 と分数で表現し、後半のように割り切れないときは 余りを表現したり、少数点以下割り算をどんどん 続けて行く場合などいろいろな考え方、表現があります。ここでは、簡単な場合として 自然数、1、2、3、4、、、、 の場合を考えましょう。
割り切れるときには、次の等式が成り立つことが大事です:
2X6=12, 3X4=12, 4X3=12, 2X6=12.
実際、12割る3を考えるとき、12の中に3が いくつ有るかと考え、3に何を掛けたら12になるかと考えるのではないでしょうか。ここには少し難しいところが有って、計算機などは決まった考えしかできないので、12から3を次々に引いて何回引けるかと考えれば、何時でも決まった考え方で割り算の商を求めることが出来ます。前半の考えは掛け算の逆を考えて、後半は引き算を何回やっての考え方ですから、前半の考えには感覚、予想などが必要であって、難しいですが、引き算の繰り返し(除いていく計算、除算)をただやればよいのですから、簡単です。計算機はこのようにして 割り算を実際行っています。
ゼロ除算とは、ゼロで割ることを考えるのですから、上記の場合、割る数、2,3,4,6のところでそれらがゼロだったらどうなるかと考えること、それがゼロ除算です。 ゼロで割ることを考えることです。
掛け算の逆で考える方法では、ゼロに何を掛けてもゼロですから、例えば、100/0は 0Xa=100 を探したいと考えても、0Xa =0 ですから、できない、存在しないということになってしまいます。そこで、現代数学では ゼロで割ってはいけないと教えられています。 数学界では2000年を超えた定説です。問題は、世の中には、分母がゼロになる公式が沢山現れて、分母がゼロになる場合が問題になります。
例えば、理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。(r^2は rの2乗の意味)。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば無限大か? 無限大とは何か、数か? その意味が不明であるという点である。
そもそも足し算、掛け算の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インドの数学者・天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも大事な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな意義、影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の我々の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と神秘的な問題は、アインシュタインの人生最大の関心であったという言葉に象徴される。
物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、あるいは軽ろんじて、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたことは 実に奇妙、実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。ゼロ除算は至るところに見られると言っても良いほどです。
ゼロ除算を発見して議論を広く議論して間もなく、道脇愛羽さん当時6歳と緩まないネジで 有名なお父さん道脇裕氏たちは、3週間くらいで何でもゼロで割ればゼロであるとの驚嘆すべき発見に対して、理由を付けてそれは自明であると述べてきたのは 実に面白いことです。多くの専門家が、2、3年を越えても分からないと言っている経過を見ると本当に驚きです。
100/0 を100 から 0を何回引けるかと考えると、0を引いても100 は減りませんので、引いたとはいえず、減らすという意味で引ける回数はゼロ、したがって100/0=0 そして、余りが100であるとしました。 私たちは、割り算の意味を拡張して、ゼロ除算は拡張された分数の意味、割り算で 何でもゼロで割ればゼロであるという理論を数学的に確立させました。
1300年間も 創始者の考えを間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智への愛、良心から、熱い想いが湧いてくる。 ― 1300年も前に、創始者によって、0/0 = 0 とされてきたのに それは間違いだとして、現在も混乱しているのは、まずいのではないでしょうか?
できない(不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。
内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。高級編は ohttp://okmr.yamatoblog.net/ にあります。
以 上
再生核研究所声明 416(2018.2.20): ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。この意味が分かるまでは、 次には進めませんので、興味があれば、 次で解説されている最初の方を参照してください:
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
できない(不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。
内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。
以 上
再生核研究所声明 414(2018.2.14): 第1回ゼロ除算研究集会基調講演要旨
(日時:2018.3.15(木曜日) 11:00 - 15:00 場所: 群馬大学大学院 理工学府)
ゼロで割る問題 例えば100/0の意味、 ゼロ除算は インドで628年ゼロの発見以来の問題として、神秘的な歴史を辿って来ていて、最近でも大論文がおかしな感じで発表されている。ゼロ除算は 物理的には アリストテレスが 最初に不可能であると専門家が論じていて、それ以来物理学上での問題意識は強く、アインシュタインの人生最大の関心事であったという。ゼロ除算は数学的には 不可能であるとされ、数学的ではなく、物理学上の問題とゼロ除算が計算機障害を起こすことから、論理的な回避を目指して、今なお研究が盛んに進められている。
しかるに、我々は約4年前に全く、自然で簡単な 数学的に完全である と考えるゼロ除算を発見して現在、全体の様子が明かに成って来た。そこで、ゼロ除算を歴史的に振り返り、我々の発見した新しい数学を紹介したい。
まず、歴史、結果と、結果の意義と意味、を簡潔に 誰にでも分かるように解説したい。
簡単な結果が、アリストテレス、ユークリッド以来の 我々の空間の認識を変える、実は新しい世界を拓いていること。それらを実証するための 具体例を沢山挙げる。我々の空間の認識は 2000年以上 適切ではなく、したがって 初等数学全般に欠陥があることを 沢山の具体例で示す。
ゼロ除算は新しい世界を拓いており、この分野の研究を進め、世界史に貢献する意志を持ちたい。
尚、ゼロおよび算術の確立者 Brahmagupta (598 -668 ?) は1300年以上も前に、0/0=0 と定義していたのに、世界史は それは間違いであるとしてきた、数学界と世界史の恥を反省して、世界史の進化を図りたい。
以 上
0 件のコメント:
コメントを投稿