2018年8月19日日曜日

平成

NEW !
テーマ:

平成

平成(へいせい)は日本元号の一つ。昭和の後。今上天皇在位中の1989年(平成元年1月8日から現在に至る。2001年(平成13年)の始まりには西暦における20世紀から21世紀への世紀の転換もあった。2019年(平成31年)4月30日に今上天皇退位により終了する予定であり、予定通り終了した場合、30年113日間(=11,070日間)にわたることとなる。なお、日本の元号では昭和(64年)、明治(45年)、応永(35年)に次いで4番目の長さである(5番目は延暦の25年)。
西暦2018年(本年)は平成30年に当たる。本項では平成が使われた時代(平成時代)についても記述する。

提案者
最終候補の3案の一つであった「平成」を提案したのは、東洋史学者で東京大学名誉教授の山本達郎である[7][2][8]。

内閣内政審議室長(当時)として新元号選定に関わった的場順三[7]によると、元号の最終候補3案は極秘裏に委嘱していた山本、宇野精一、目加田誠の3氏の提案によるものだという(目加田が「修文」を宇野が「正化」を提案したことを後に認めている)[9]。『文藝春秋』での佐野眞一の取材に対して、的場は「元号は縁起物であり改元前に物故した者の提案は直ちに廃案になる」と述べ、それ以前に物故した諸橋轍次、貝塚茂樹、坂本太郎らの提案はすべて廃案になったとしている[9]。

渡部恒三によると、「平成」の元号は改元時の内閣総理大臣・竹下登ら日本国政府首脳が決定前から執心していたという[9]。竹下が1990年(平成2年)1月に行った講演の際に、非公式ながら「平成」は陽明学者・安岡正篤の案であったと述べたとされる[10]。しかし、安岡も昭和天皇崩御前に物故しているため、彼の発案ということは有り得ない[11]。的場順三は、「実際、『平成』の考案者は安岡正篤氏という誤った説も広まっていたので、歴史の真実を歪めないためにも、新元号選定の経緯を明かすようになりました。」と述べている[12]。

出典
新元号の発表時に小渕恵三が述べた「平成」の名前の由来は、『史記』五帝本紀の「内平外成(内平かに外成る)」、『書経(偽古文尚書)』大禹謨の「地平天成(地平かに天成る)」からで「国の内外、天地とも平和が達成される」という意味である[13]。日本において元号に「成」が付くのはこれが初めてであるが、「大成」(北周)や「成化」(明)など、外国の年号や13代成務天皇の諡号には使用されており、「平成」は慣例に即した古典的な元号と言える。

江戸時代最末期、「慶応」と改元された際の別案に「平成」が有り、出典も同じ『史記』と『書経』からとされている[14]。

なお、平成の決定の際には専門家から出典箇所が偽書の偽古文尚書であり、相応しくないとする意見もあった[要出典]。


ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・・・・・・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本


再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory6, 51-58.



再生核研究所声明 443(2018.8.13):  アリストテレス以来、二千年を越える封印、タブーの解消 - ゼロ除算

一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.11.11:20 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。
ゼロで割る問題、ゼロ除算は歴史家の分析によれば、最初に考えたのはアリストテレスで、物理的な意味から真空の比、ゼロ除算は不可能であると述べ その後の西欧文化に大きな影響を与えたと言う。狭義ではゼロの発見と算術の発見者Brahmagupta (598 -668 ?)がゼロ除算0/0 を考え、その後1300年を越えて、ゼロ除算は議論されてきたが、 現在でも未明の状態と考えられる。ゼロ除算は2014.2.2発見されて論文などにも公表されているが、そのあまりにも永い歴史のゆえに 中々認知されない状況が続いている。それが殆ど当たり前のことなのに、拒否、受け入れられない状況が続いている。最近も誤解を解消すべく解説をしている:
再生核研究所声明 434 (2018.7.28)  ゼロ除算の誤解と注意点
再生核研究所声明 437 (2018.7.30)  ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
そこで、タブーの理由を考察して置きたい。ゼロ除算の結果を複数のヨーロッパの数学者に直接話したときに、アリストテレスの名前をあげて、異様に感情むき出しで拒否されたのは 強力な体験である。表情をサッと変えられた方も結構居た。そのような話しは聞きたくないという強い意志表示であるから、単に数学の話しをしているようには 感じられないものである。それも20年来の友人たちの間での出来事である。背後には永く深いギリシャ文化の影響、無やゼロ、空を嫌う文化背景、無神論を発想しているような 深い拒否反応である。 日本でもゼロで割ってはいけないは永い伝統であるから 受け入れられないは あるが、ゼロについての不愉快な気持ちは 零点や消えること、無くなることなど 不愉快な気持ちが強いようである。
数学的には 簡単にゼロ除算は不可能であることが証明されてしまう事実と共に1/0 は 無限大のようなものであるとの確信が深いためであろう。それがゼロであると言われて天地が ひっくり変える様な驚きを感じるだろう。実際、基本的な関数y=1/x を考えて、xが小さく成っていく時、yの値がどんどん大きく発散している様子を思い浮かべるだろう。アリストテレスの世界観 連続性に反するので、そのような突飛なことは認められないと考えられてきた。そこで、ゼロ除算は 有る意味では神秘的な対象 になってしまう。実際ゼロ除算は、神秘的な問題と考えられてきた。
現在でも、インターネットの世界でもそのような扱いになっている。
永いタブーの理由は、無、ゼロ、空などの忌み嫌う感情、世の連続性に拘るギリシャ文化の強い影響、数学的に明解な 不可能であることの証明 があるためではないだろうか。実際には、最も簡単な方程式 ax =b の解として、分数b/a, 割り算を考えれば、有名なMoore-Penrose一般逆で 解は何時でも一意に存在して 1/0=0 であることは相当に基本的な考えて ゼロ除算は当たり前の周知の筈と考えられるが、上記の永い伝統、思い込みで それらは受け入れられず、沢山の意味付けや例を示されても、中々理解されない状況が続いていると考えられる。しかしながら、ゼロ除算は発見後3週間くらいで、ゼロ除算は割り算の意味から当たり前であるとの道脇親娘(当時6歳)の言明は誠に興味深い。
以 上

再生核研究所声明 444(2018.8.14):  小・中・高校生に影響を与える初歩数学の出現 - ゼロ除算

一般向きにゼロ除算の解説を 4年間を越えて続けている:

数学基礎学力研究会 サイト:
○ 堪らなく楽しい数学-ゼロで割ることを考える。

しかるに 2018.8.11.10:35 突然に声明の全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。
数学としての実体は声明441の内容であるが、この声明の発想が異なる。小・中・高校生の数学のカリキュラム内容は相当に定着していて、変わりようがないと考えられているのではないだろうか。複素数の扱い、行列の扱い、ユークリッド幾何学の扱いなどは多少変化がみられるが確立している数学の大勢の内から、どのような素材を選択してどのくらい学習させるべきかなどの問題で 絶えず小さく変動するのは当然のことである。小・中の生徒の算数・数学などの素材などは 変わりようがないものと考えられているのではないだろうか。 ― 逆に見ると数学の研究の成果などは基礎教育に反映されないが、それは学部数学ですら、そのような状態とみられる。しかし、大学院レベルに至れば、教育内容は新しい研究成果の動向で変化していると見られる。しかるに、ぼんやり見ても物理や化学、生物学などの分野では 研究の進展で基礎教育の内容が 大きく変化している様は 驚くほどではないだろうか。それらの現象の特徴は、抽象的な基礎部門と現実の現象に結びつく応用展開の科学の相違を表していると考えられる。
しかるに、初等数学全般に大きな影響を与えるゼロ除算の分野ができてきたことに注意を喚起したい。 声明441の関与する部分を引用しよう:

再生核研究所声明 441(2018.8.9):  小・中・高校の数学教育の視点からのゼロ除算について

法華経3000巻の意義・教訓から、小・中・高校の数学教育の視点からのゼロ除算について感覚的に情念として触れてみたい。 初等数学教育において ゼロ除算の教育は改められるべきである。そもそも割り算、分数の意義、意味を正確にきちんと教育する必要がある。理解は正確に 実際当時6歳であった道脇愛羽さんが理解したように理解すれば、割り算の意味もゼロ除算の意味も明解になり、その影響と良き視点、世界の広がりは極めて大きい。除算の考えによる割り算の捉え方、すなわち、割り算とはたとえば10割る2とは10の中に2が幾つか入っているかと考えることが原点で、それは10から2を 何回引けるかということを意味する。我々はその詳しい方式を道脇方式として述べて、論文や解説で精しく述べている。既に割り算の計算方法、指導方法なども道脇裕氏によって具体的に提案されている。これは割り算の計算法の初期の指導法として本質的で極めて優れた方法に思えるので、広く活用されることを期待している。
そこで、大事なことは 永い神秘的な歴史を有するゼロ除算、ゼロで割る問題があっけなく解決してしまい、ゼロ除算はゼロであるという結果を導くことである。すなわち、1/0=0/0=a/0=0 である。ゼロで割るとは、割らないことと同じであるということになる。したがって、割りあてられた量もなく、ゼロである。ここで、ゼロで割ることの正確な意味を捉え、またゼロの意味をいろいろな視点からとらえる基礎を得ることになるだろう。ゼロのいろいろな意味を考える基礎も得られる。
次の段階で、関数が現れ、反比例の具体的な関数y=1/xが現れてくる段階になれば、その関数の原点での値は、ゼロ除算の結果から、それをゼロと考えることの自然性を学び、その意義の大きさはカリキュラムの進展とともに驚きの感情をもって学ぶことができるだろう。立体射影の概念と無限遠点における強力な不連続性は我々の数学と空間の初歩的で基本的な実体であるから、早期に学習しておきたい。内容は難しくなく、ユークリッド幾何学や三角関数の性質についても全般的な修正が求められる。その辺のカリキュラムの変更は時間を掛けて整然とした形に改められなければならないが内容自体はそうは難しくなく、しかも視野は大きく拓かれる。大学以降ではゼロ除算は数学の公理系の変更、追加のように扱われ初等数学全般の修正が求められる。象徴的な結果は\tan(\pi/2)=0、すなわちy軸の勾配はゼロであると述べられる。それは、幾何学、解析学全般に大きな影響を与える。微分方程式論や解析関数論などは本質的な修正が行われ、数学は完全化され、美しくなるだろう。
そこで、数学教育に携わる方は1歩進んで次の世代の数学を学ばれ、それを楽しく生徒たちに折りに触れて紹介され、生き生きとした数学の世界を 紹介して頂きたいと願っている。 数学はできていて 完成されたものではなく、未完の発展中の存在で未知の世界と盛んに関係している存在であるとしたい。そのような教育は真理を求める基本的な精神の涵養と育成にも大きく貢献するだろう。またゼロ除算発見の最大の意義は、人間が如何に独断と偏見に満ち、思い込んだら抜けられない存在であるか、我々の視野が如何に狭く、単細胞的な存在であるかを歴史的に学べるという点にあると言える。それには世の秀才や天才、偉大な人びとさえ例外でないことを示している。人間を知ることである。

以 上

再生核研究所声明 437 (2018.7.31) :  ゼロ除算とは何か - 全く新しい数学、新世界である
人の生きるは真智への愛にある。 真智とは神の意志のことである。その素は情念にある。要するに事実、真実を知りたいという 心の底から湧いて来る情熱である。
ゼロ除算とは、ゼロで割ることを考えることであるが、割る意味を常識的に掛け算の逆として、0 掛ける x が a  の方程式の解と考えれば、そのような解はa がゼロでなければ解が存在しないことが直ちに証明されてしまう。 ゆえにゼロ除算は不可能であるとなってしまう。 ところが算術の確立者が1300年も前に、既にゼロ除算を考え、さらに物理的な観点からアリストテレスがゼロ除算は不可能であると考察を行っているという。しかしながら、Einstein や多くの物理学者や 計算機関係者によってゼロ除算は考えられて来て 永い神秘的な歴史をたどっている。物理学の基本方程式にゼロ分のが現れて その時の意味が問題になり、他方、計算機がゼロ除算に遭うと計算機障害を起こすので、計算機障害を回避したいという動機もある。また、不可能であると言われると 何とか可能にしたいという自然な欲求が 人間の心 には存在する。 ― 実際、数学の歴史は 不可能を可能にしてきた歴史とも見られ、ゼロ除算も可能になるだろうと 予言していた数学者が存在していた。(再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること:相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ビッグバン、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。以下略)
ゼロ除算の発見には 思えば、奇妙な状況が起きている。ゼロ除算の本質は、基本的な関数y=1/x  の原点での値をゼロと定義して、それを1/0=0 と書くことである。沢山の理由付けや説明の方法は発見されているが、この事実は現代数学の公理系や定理から導くことができない。しかしここから発展されるゼロ除算算法から、現代数学の広範な部分に新規な知見や結果が沢山導かれ、それらを補完しなければ現代数学は 完全とは言えず、いろいろ不備を備えていることが800件を超える具体例で示されている。論理の厳密な展開でなく本質的な説明を簡明に行いたい。ゼロ除算とは、 要するに解析関数の孤立特異点で、そこでの値をローラン展開の正則部の係数C_0 で定義して、その結果を応用するということである。- 関数 W=1/z の原点での値をゼロとする。今まで、孤立特異点で 特異点の周りで考え、孤立特異点に近づけば無限の値に近づくと考え、特異点で極をとると 表現されてきた。 この事実は当然適切で、正しいがゼロ除算では、孤立特異点自身では 固有な値C_0をとるとするのであるから、未だかつて誰も考えたことのない数学、世界であると言える。ゼロ除算の結果を1/0=0/0=\tan(\pi/2) =0 などと表現すれば、 人は それは 何だ、とても信じられない結果で、 論理を越えて そのような数学は興味も関心もないと顔をしかめて表明するだろう。しかしながら、似たような世界史上の事件を想い出したい。- 非ユ-クリッド幾何学の出現で  平行線が無限個存在する幾何学が現れたと言われれば、そのような数学は 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。
ところが具体的にいろいろ考えれば、そのような世界は当たり前に存在して、 反ってユークリッド幾何学より面白く大きな役割を有することが分かってきている。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、始めには同じように発想するだろう。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。ゼロ除算と現代数学は背反するのでは なく、 現代数学の欠陥、例外点として避けていたところを 補完して完全な数学にする性質を持っている。現代数学を完全化させる全く新しい数学が ゼロ除算である。ゼロ除算の余りに大きな影響のために ゼロ除算は数学の公理系の一つに加えられるべきものと考えられる。次も参照:

再生核研究所声明 434 (2018.7.28) :  ゼロ除算の誤解と注意点
再生核研究所声明 431(2018.7.14):  y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界? 
以 上


再生核研究所声明 434 (2018.7.28) :  ゼロ除算の誤解と注意点
(2018.7.26.16:35 沢山ゼロ除算の例を作られたり、相当ゼロ除算の研究に没頭している方からメールが寄せられたが、相当基本的な誤解をしている様子が伺えるので、そのメールをヒントに、誤解を解くような気持で、ゼロ除算の解説をしたい。多くの人が同じような誤解に陥っているのではないかと思われるからである。)
その中で、ゼロ除算は公理系に基づいて議論されていないので、数学界で受け入れ難いのではないかとゼロ除算の数学の不備を指摘している。 数学としてゼロ除算は公理系との関係は 実は 深く関係する面があるが、 ゼロ除算の数学は、厳然として公理系の問題を避けて数学が出来ることを述べたい。
動機、意味付け、裏付けを除いて、はじめにゼロ除算算法を ローラン展開の正則項C_0 で定義する。 ― 簡潔に素人流に言えば、関数y=1/xの原点における値をゼロと定義すること。 これが ゼロ除算の核心である。これだけの仮定からいろいろな結果を論理的に導く。 典型的な例は \tan(\pi/2) = 0 である。 ― これはy軸の勾配がゼロであること、垂直に立っている電柱の勾配がゼロであると表現される。 この結果はユークリッド幾何学、解析幾何学、微分幾何学、三角関数、微分法、複素解析など、広範に現れて従来説明できなかったような状況を上手く解釈できるなど大きな影響を初等数学全般に与える。 簡単には 現代初等数学には 基本的な欠陥があると表現される。 既に800件を超える沢山の具体例が得られ、公表されている。そこで問題は、最初の仮定が 証明できないで仮定されていることである。それ故に 確かでないものから導かれた結果が危うく成るのではないだろうかと 人は危惧されるのでは ないだろうか。仮定から導かれた結果とは 何だろうか。こういう仮定をすれば、このような結果が得られるでは、最初の仮定がおかしければ それから導かれる結果もおかしくなるのではないだろうかと心配する。 そこで数学とは何だろうかと問う必要がある。 数学とは公理系から導かれた関係からなる総体が一つの数学である。 群の公理系から導かれる全体が群論であり、ユークリッド空間の公理系から導かれる関係の世界が ユークリッド幾何学である。 ゼロ除算算法の仮定から導かれる世界がゼロ除算数学であり、その意味でゼロ除算算法の定義は公理のようなものである。 大事なことはゼロ除算の真偽は問えないということである。良い数学とは、ゼロ除算が良い数学と言えるかどうかは、それらから導かれた結果、関係、展開が世の中にどれほどの良い影響を与えるかにかかっており、仮定や公理系の真偽はただ矛盾なく展開されているかにかかっていると言える。
そこでゼロ除算の数学の優秀性を示す為に沢山の具体例を示し、人生観や世界観に関わる大事な世界を拓くことを具体的に示している。特にユークリッド以来の空間の考えを齎した意義を示している。 現代初等数学が全般的に初歩的な欠陥があることを広く示している。
ゼロ除算は ゼロ除算の定義の発見であり、ゼロ除算をどのように捉えるかが本質的な問題であった。ゼロ除算関係者には 空回りを続けている人がほとんどで、ゼロ除算の意味、定義をきちんとできなかったためと考えられる。ゼロ除算とは発見であり、1/0,0/0,z/0などの定義、意味をはっきりさせることであった。 その上で、それらのものにゼロを対応させることである。ちょうど群の公理系が定義されているように、ゼロ除算を含む山田体の構造すら確立されており、ゼロ除算の数学的基礎は既に確立している。
特にゼロ除算では、得られた結果を吟味して 良いものを採用するように要請している。
しかしながら、この態度は そもそも数学の基本的な姿勢では なかったろうか。得られた結果がどのような意味を有し、より良い効果を社会に齎すか 絶えず検証する態度が大事ではないだろうか。 その様な検証が無ければ独りよがりの世界に陥ってしまうのでは ないだろうか。
非ユ-クリッド幾何学の出現で  平行線が無限個存在する幾何学が現れたと言われれば、そのような数学には 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、同じように発想するのではないだろうか。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。
2018.7.27.8:40

以 上

再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界? 

2018年7月12日8時25分 ひとりでに湧いてきた。 おかしな私に おかしな構想が湧いてきた。ガリレオは つぶやいたという それでも地球は動いていると。 そのように、これは真実と素直な心情と思えるので 一気に纏めて置きたい。
まず、次の記録、事実を回想する: 今日、2018.6.3.15時ころ、あるテーブルで 6人で 食事をとっていた。隣の方が、大工さんだというので、真直ぐに立った柱の傾きは いくらでしょうかと少し説明して 問いました。 皆さん状況は 良く理解されていましたが、65歳くらいの姉妹 御婦人、石原芳子さん、清水きみ子さんが、ゼロじゃない? と結構当たり前のように おっしゃったのには 驚き、感銘を受けました。ゼロ除算から導かれた y軸の勾配がゼロは 相当に 感覚的にも当たり前であることが 分かります。発見当時、妻と息子に聞いた時も そうでした。真直ぐに立った 電柱の勾配は ゼロであると 言いました。これは 当たり前ではないでしょうか。所が 現代数学は 曖昧になっていて、分からない、不定のような 扱いになっています。おかしいですね。世界史の恥にならないでしょうか?
発見当時20年以上の友人ベルリン大学教授に ジョーク交じりに問うたところ、y軸の勾配は 右から近づけばプラス無限大、左から近づけばマイナス無限大で y軸自身の勾配は 考えられないとなっているという(記録No.-1:2015.9.17.05:45、No.-2:2015.9.18.19:15.)。
原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会,代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。
以 上




0 件のコメント:

コメントを投稿