2018年8月24日金曜日

ゼロ除算(division by zero)1/0=0、0/0=0、z/0=0

NEW !
テーマ:
ゼロ除算(division by zero)1/0=0、0/0=0、z/0=0

再生核研究所声明 450(2018.8.22):  水前寺清子様に呼応して - 雄たけび
雄たけびとして、谷亮子柔道選手の金メダル獲得の際の満面喜びのシーン、北島康介水泳選手の金メダル獲得の際の発言、超気持良いなどの叫びが思い出される。下記の歓喜、凄い感銘をうけて、呼応する形で 湧いてきた情念を思いのままに表現したくなった。 
(水前寺清子様、坂本冬美様、それに 皆さん、歌 素晴らしかった。 伊東さんの紹介も 味わいが有りますね。素晴らしい日本の歌:NHK 新BS 日本の歌、 素晴らしい。日本の歌謡界のレベルは 高いですね。 ― 雄たけび: 雄叫び ・ 叫び ・ 怒号 ・雄 嘶き ・ 絶叫 ・ 雄たけび ・ ときの声 ・ 鬨の声 ・ 勝ちどき ・ 歓声 ・ 喚声 ・ 叫び声)。
清子様の歌詞に 男は、泣いてはいけない、ほれなきゃいけない、天下を取れ と凄い言葉がある、まさか数学で天下を狙うことは 想像もできない程に凄い天才や秀才たちの集まりの世界、能力も足りなく小さな存在である立場では思いもよらないことと発想するだろう。ところが世には 偶然やまぐれ当たりがあるから、面白い。それは、一般の方からの質問 100/0 の意味を問われて 真面目に深く考えて、偶然に発見したものである。いわゆるゼロ除算、ゼロで割ることを考える、古い歴史をもつ神秘的な問題に対する あまりにも簡単な発見である。それが、アリストテレス、ユークリッド以来の空間の発見に繋がり、初等数学全般の修正を求めているから、 天下取りより はるかに愉快な事件ではないだろうか。 世界の初等数学全般を変更して、20億人以上が理解して 新しい数学、世界の出現に驚嘆するだろう。内容は簡単に 真直ぐに立った電柱の勾配は、y軸の勾配はゼロであると述べられる。 数式で表現すれば、
1/0=0/0=z/0= \tan(\pi/2)=0
と簡潔に述べられる。簡単な関数y=1/xの原点x=0における値はゼロである。これはゼロと無限大の微妙な関係を捉えている。それは人生とは何かという問いに対して 新しい世界観を示している。またゼロ除算の歴史は 人間とはどのようなもので、人間が如何に独断と偏見に満ちた存在で、人間の愚かさを良く示している。数学的な内容について、次を追記して置こう:
再生核研究所声明 442(2018.8.10):  ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
次も参照:
再生核研究所声明 431(2018.7.14):  y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
再生核研究所声明 437 (2018.7.30) :  ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
以 上
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\usepackage{color}
\usepackage{url}

%%%%%%% �}�ԍ��̃J�E���^
\newcounter{num}
\setcounter{num}{0}
%\setcounter{prop}{1}
%\newcommand{\Fg}[1][]{\thenum}

\newcommand\Ra{r_{\rm A}}

 \numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 448:\\  Division by Zero;\\
 Funny History and New World}
\author{再生核研究所}
\date{2018.08.20}


\maketitle

\newcommand\Al{\alpha}
\newcommand\B{\beta}
\newcommand\De{\delta}

\def\z{\zeta}
\def\rA{r_{\rm A}}


{\bf Abstract: }  Our division by zero research group wonder why our elementary results may still not be accepted by some wide world and very recently in our Announcements: 434 (2018.7.28),
437 (2018.7.30),
438(2018.8.6), \\
441(2018.8.9),
442(2018.8.10),
443(2018.8.11),
444(2018.8.14),
in Japanese, we stated their reasons and the importance of our elementary results. Here, we would like to state their essences. As some essential reasons, we found fundamental misunderstandings on the division by zero and so we would like to state the essences and the importance of our new results to human beings over mathematics.

We hope that:

close the mysterious and long history of division by zero that may be considered as a symbol of the stupidity of the human race and open the new world since Aristotle-Eulcid.

From the funny history of the division by zero, we will be able to realize that

 human beings are full of prejudice and prejudice, and are narrow-minded, essentially.

\medskip


\section{Division by zero}

The division by zero with mysterious and long history was indeed trivial and clear as in the followings:
\medskip

By the concept of the Moore-Penrose generalized solution of the fundamental equation $az=b$, the division by zero was trivial and clear  as $b/0=0$ in the {\bf generalized fraction} that is defined by the generalized solution of the equation $az=b$.

Note, in particular, that there exists a uniquely determined solution for any case of the equation $az=b$ containing the case $a=0$.

People, of course, consider as the division $b/a$ that it is the solution of the equation $ az =b$ and if $a=0$ then $0 \cdot z =0$ and so, for $b\ne0$ we can not consider the fraction $a/b$. We have been considered that the division by zero $b/0$ is impossible for mysteriously long years, since the document of zero in India in AD 628. In particular, note that Brahmagupta (598 -668 ?) established  four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brhmasphuasiddhnta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is right and suitable. However, he did not give its reason and did not consider  the importance case $1/0$ and the general fractions $b/0$. The division  by zero was a symbol for {\bf impossibility} or to consider the division by zero was {\bf not permitted}. For this simple and clear conclusion, we did not definitely consider more on the division by zero. However, we see many and many formulas appearing the zero in denominators, one simple and typical example is in the function $w=1/z$ for $z=0$.
We did not consider the function at the origin $z=0$.

In this case, however, the serious interest happens in many physical problems and also in computer sciences, as we know.

When we can not find the solution of the fundamental equation $az=b$, it is fairly clear to consider the Moore-Penrose generalized solution in mathematics. Its basic idea and beautiful mathematics will be definite.
Therefore, we should consider the generalized fractions following the Moore-Penrose generalized inverse. Therefore, with its meaning and definition we should consider that $b/0=0$.

It will be very  curious that we know very well the Moore-Penrose generalized inverse as a very fundamental and important concept, however, we did not consider the simplest case $ az =b$.

Its reason may be considered as follows: We will  consider or imagine that the fraction $1/0$ may be like infinity or ideal one.

For the fundamental function $W =1/ z $ we did not consider any value at the origin $z = 0$. Many and many people consider its value by the limiting like $+\infty $ and  $- \infty$ or the
point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or
based on the basic idea of Aristotle.  --
 For the related Greece philosophy, see \cite{a,b,c}. However, as the division by zero we have to consider its value of
the function $W =1 /z$ as zero at $z = 0$. We will see that this new definition is valid widely in
mathematics and mathematical sciences, see  (\cite{mos,osm}) for example. Therefore, the division by zero will give great impacts to calculus, Euclidian geometry,  analytic geometry, complex analysis and the theory of differential equations in an undergraduate level and furthermore to our basic ideas for the space and universe.

 For the extended complex plane, we consider its stereographic  projection mapping as the Riemann sphere and the point at infinity is realized as the north pole in the Alexsandroff's one point compactification.
The Riemann sphere model gives  a beautiful and complete realization of the extended complex plane through the stereographic projection mapping and the mapping has beautiful properties like isogonal (equiangular) and circle to circle correspondence (circle transformation). Therefore, the Riemann sphere is a very classical concept \cite{ahlfors}.
\medskip

Now, with the division by zero we have to admit the strong discontinuity at the point at infinity. To accept this strong discontinuity seems to be very difficult, and therefore we showed many and many examples for giving the evidences over $800$ items.

\medskip

We back to our general fractions $1/0=0/0=z/0=0$ for its importances.

\medskip

H. Michiwaki and his 6 years old daughter Eko Michiwaki stated that in about three weeks after the discovery of the division by zero that
division by zero is trivial and clear from the concept of repeated subtraction and they showed the detailed interpretation of the general fractions. Their method is a basic one and it will give a good introduction of division and their calculation method of divisions.

 We can say that division by zero, say $100/0$ means that we do not divide $100$ and so the number of the divided ones is zero.

\medskip

Furthermore,
recall the uniqueness theorem by S. Takahasi on the division by zero:
\medskip

 {\bf  Proposition 1.1 }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d  \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}


 Note that the complete proof of this proposition is simply given by  2 or 3 lines. 
 In the long mysterious history of the division by zero, this proposition seems to be decisive.
Indeed,  Takahasi's assumption for the product property should be accepted for any generalization of fraction (division). Without the product property, we will not be able to consider any reasonable fraction (division).

Following  Proposition 1.1, we  should {\bf define}
$$
F (b, 0) = \frac{b}{0} =0,
$$
and consider, for any complex number $b$, as $0$;
that is, for the mapping
\begin{equation}
W = f(z) = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined from the form}).

\medskip

Furthermore,
the simple field structure containing division by zero was established by M. Yamada.
\medskip


In addition, for the fundamental function  $f(z) = 1/z$, note that
the function is odd function
$$
f(z) = - f(-z)
$$
and if the function may be extended as an odd function at the origin $z=0$, then the identity $f(0) = 1/0 =0$ has to be satisfied. Further, if the equation
$$
\frac{1}{z} =0
$$
has a solution, then the solution has to be $z=0$.
\medskip


\section{Division by zero calculus}

As the number system containing the division by zero, the Yamada field structure is complete.

  However, for applications of the division by zero to {\bf functions}, we  need the concept of the division by zero calculus for the sake of uniquely determinations of the results and for other reasons.

For example,  for the typical linear mapping
\begin{equation}
W = \frac{z - i}{z + i},
\end{equation}
it gives a conformal mapping on $\{{\bf C} \setminus \{-i\}\}$ onto $\{{\bf C} \setminus \{1\}\}$ in one to one and from \begin{equation}
W = 1 + \frac{-2i}{ z - (-i)},
\end{equation}
we see that $-i$ corresponds to $1$ and so the function maps the whole $\{{\bf C} \}$ onto $\{{\bf C} \}$ in one to one.

Meanwhile, note that for
\begin{equation}
W = (z - i) \cdot \frac{1}{z + i},
\end{equation}
if we enter $z= -i$ in the way
\begin{equation}
[(z - i)]_{z =-i} \cdot  \left[ \frac{1}{z + i}\right]_{z =-i}  = (-2i)  \cdot 0=  0,
\end{equation}
we have another value.
\medskip

In many cases, the above two results will have practical meanings and so, we will need to consider many ways for the application of the division by zero and we will need to check the results obtained, in some practical viewpoints. We referred to this delicate problem with many examples.


Therefore, we will introduce the division by zero calculus that give important values for functions.  For any Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{-1}  C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero
\begin{equation}
f(a) =  C_0.
\end{equation}
Note that here, there is no problem on any convergence of the expansion (2.5) at the point $z = a$, because all the terms $(z - a)^n$ are zero at $z=a$ for $n \ne 0$.
\medskip

For the correspondence (2.6) for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering the formal derivatives in (2.5), we {\bf can define any order derivatives of the function} $f$ at the singular point $a$; that is,
$$
f^{(n)}(a) = n! C_n.
$$

\medskip



{\bf Apart from the motivation, we  define the division by zero calculus by (2.6).}
 With this assumption, we can obtain many new results and new ideas. However, for this assumption we have to check the results obtained  whether they are reasonable or not. By this idea, we can avoid any logical problems.  --  In this point, the division by zero calculus may be considered as an axiom.
\medskip
This paragraph is very important. Our division by zero is just definition and the division by zero is an assumption. Only with the assumption and definition of the division by zero calculus, we can create and enjoy our new mathematics. Therefore, the division by zero calculus may be considered as a new axiom.

 Of course, its strong motivations were given. We did not consider any value  {\bf at  the singular point} $a$ for the Laurent expansion (2.5). Therefore, our division by zero is a new mathematics entirely and isolated singular points are a new world for our mathematics.
We had been considered properties of analytic functions {\bf  around their isolated singular points.}

The typical example of the division zero calculus is $\tan (\pi/2) = 0$ and the result gives great impacts to analysis and geometry.
See the references for the materials.
\medskip

For an identity, when we multiply zero, we obtain  the zero identity that is a trivial.
We will consider the division by zero to an equation.

For example, for the simple example for the line equation on the $x, y$ plane
$$
 ax + by + c=0
$$
we have, formally
$$
x + \frac{by + c}{a} =0,
$$
and so, by the division by zero, we have, for $a=0$, the reasonable result
$$
x = 0.
$$

However, from
$$
\frac{ax + by}{c} + 1 =0,
$$
for $c=0$, we have the contradiction, by the division by zero
$$
1 =0.
$$
 For this case, we can consider that
$$
\frac{ax + by}{c} + \frac{c}{c} =0,
$$
that is always valid. {\bf In this sense, we can divide an equation by zero.}

\section{Conclusion}

Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

We have to arrange globally our modern mathematics with our division by zero  in our undergraduate level.

We have to change our basic ideas for our space and world.

We have to change globally our textbooks and scientific books on the division by zero.

From the mysterious history of the division by zero, we will be able to study what are human beings and about our narrow-minded.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.

\bibitem{ass}
H. Akca, S. Pinelas and S. Saitoh, The Division by Zero z/0=0 and Differential Equations (materials).
International Journal of Applied Mathematics and Statistics, Int. J. Appl. Math. Stat. Vol. 57; Issue No. 4; Year 2018, ISSN 0973-1377 (Print), ISSN 0973-7545 (Online).

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.


\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18april}
H.  Okumura and S. Saitoh,
Harmonic Mean and Division by Zero,
Dedicated to Professor Josip Pe$\check{c}$ari$\acute{c}$ on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

\bibitem{os18e}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG)(in press).





\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.


\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer)

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{s18}
S. Saitoh, Division by Zero Calculus (Draft) (210 pages): http//okmr.yamatoblog.net/


\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{a}
https://philosophy.kent.edu/OPA2/sites/default/files/012001.pdf

\bibitem{b}
http://publish.uwo.ca/~jbell/The 20Continuous.pdf

\bibitem{c}
http://www.mathpages.com/home/kmath526/kmath526.htm


\end{thebibliography}

\end{document}

ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
                      

ゼロ除算の発見はどうでしょうか:
Black holes are where God divided by zero:

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 
https://ameblo.jp/syoshinoris/entry-12287338180.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html
Division By Zero(ゼロ除算)1/0=0、0/0=0、z/0=0
ゼロ除算(ゼロじょざん、division by zero)1/0=0、0/0=0、z/0=0

ソクラテス・プラトン・アリストテレス その他
https://ameblo.jp/syoshinoris/entry-12328488611.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて
https://ameblo.jp/syoshinoris/entry-12348847166.html

再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
再生核研究所声明 417(2018.2.23):  ゼロ除算って何ですか - 中学生、高校生向き 回答
再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

2018.3.18.午前中 最後の講演: 日本数学会 東大駒場、函数方程式論分科会 講演書画カメラ用 原稿
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より
再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算
再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681

Einstein's Only Mistake: Division by Zero


0 件のコメント:

コメントを投稿