2018年8月27日月曜日

牛津告诫父母一个建议 只为提高孩子数学智力 2018年08月26日 11:50 新浪博客

牛津告诫父母一个建议 只为提高孩子数学智力

2018年08月26日 11:50 新浪博客


  前段时间有个文科妈妈问我该如何教孩子数学的问题,恰好最近我也在忙活一件大事,在写一本关于数学思维的书,因此正好借这个问题跟大家谈谈该如何引导孩子的数学学习。
  父母给孩子学数学有一个误区,就是买很多练习册给孩子刷题。刷题是必要的,但是刷题的前提是孩子学数学得有乐趣,得建立题目背后的数学思维,这样做题就会举一反三、一通百通。举个最简单的例子,加法里有一个最基本的换位定理,就是:
  a + b = b + a
  如果孩子的数学思维足够好,充分理解了这个定理,那么TA将来做题,就能理解3+2=2+3;就算题目复杂点,诸如384+983=983+384,TA也能看明白;更有甚者,如果多几个加数,比如4个加数之间的互相换位,TA理解起来也是妥妥的。
  所以学数学,数学思维培养很重要,而数学思维培养的关键就是要让孩子学数学充满乐趣。
  前几天看到 Oxford Learning(牛津教育)写的一篇文章,就是讲如何让孩子学数学充满兴趣的,
(from https://www.oxfordlearning.com/make-math-more-fun/)
  文章提出了几点诀窍,深以为然,我也是从5年来辅导儿子学数学的经历,才逐渐领悟到这些,因此今天就跟大家谈一谈怎样才能让数学学习更加有效、有趣!
  一、让数学像游戏一样
  做游戏孩子都会喜欢,如果让学数学像做游戏一样有趣,那么孩子自然而然就会爱上数学的。
  你们听过奥数里一个经典的难题叫 “鸡兔同笼” 问题吗?这类题目一般是告诉你笼子里鸡和兔子总的数量,另外还告诉你脚的总数量,问你一共有几只兔子、几只鸡?
  鸡兔同笼问题理解起来真是超难的,很难给娃讲明白,而且讲着讲着孩子就会失去兴趣了。当年我给憨憨讲了1小时都没讲明白,结果憨妈讲了10分钟就搞定。原来憨妈是通过做游戏的方式跟憨憨讲解的。
  她先在纸上画鸡和兔子,这时候鸡在地上有2只脚,而兔子在地上有4只脚,
牛津告诫父母一个建议 只为提高孩子数学智力
  然后憨妈说:“我们做游戏啦,每只动物都举起两只脚吧”,于是鸡在地上就没有脚了,而兔子在地上还剩2只脚,
牛津告诫父母一个建议 只为提高孩子数学智力
  这时候地上剩下的脚都是兔子的了,只要知道地上还剩多少只脚,就能知道兔子的数量,紧接着鸡的数量也自然而然就知道了!
  你看我讲60分钟都讲不明白的难题,憨妈10分钟搞定,效率足足提高了6倍,这就是游戏化教学的好处,用游戏的方式教孩子数学,秒懂!
  二、数学和生活相关联
  数学知识本身很空洞,但是如果和现实生活相关联,那么孩子理解起来就会有趣许多。
  举一个我给憨憨辅导空间思维的例子,这个例子我也用在了我正在写的数学思维书当中。我给憨憨讲数学,就喜欢跟现实生活结合起来,比如结合历史、科学、文化等等,反正我是水瓶座,特别会天马行空。
(我的数学思维书草稿)
  空间思维有一个重要的考点:就是要考数方块的数量,考方块各个角度的视图,以及方块的变换等等。在学习这个知识的时候,我就不直接给憨憨做题,而是跟他做了一个Project。我先给憨憨讲玛雅文化以及玛雅神庙,然后跟他说玛雅国王要建神庙,需要很多石块,那么你作为一个设计师,如何帮国王统计石块搬运需要的人数、如何帮国王设计多视角的规划图、如何根据国王提供的线索搭建模型等等。
  我把这些问题一抛,憨憨做题的兴趣一下子就被点燃了,当大脑兴奋的时候,孩子的思维活跃度也是极高的,这样憨憨就更加容易理解空间思维这个知识点,很快就掌握了做题的诀窍。
  你看,数学和生活场景相结合,这对激发孩子学习的兴趣是非常管用的。
  三、多用教具教数学
  教具也是学数学一个极好的方法,在美国课堂里,老师经常用各种各样的教具教孩子数学,而教具可爱、有趣的教学形式也是非常吸引孩子的兴趣。
  比如我就特别喜欢用乐高积木来教憨憨的数学思维,下面这个内容也是来源于我写的数学思维书的草稿,
(我的数学思维书草稿)
  这个内容是我在教憨憨个位数加法的时候,让他用乐高拼出所有加数之和等于6的情况。用乐高有一个很大的好处,你看底盘我放了一个6眼的积木,然后其余所有的加法都基于这个底座的6眼积木来,孩子无论放什么积木上去都得保证和底座的积木一样长,这样无形中就教会了他们加法,比如他放一个1眼的积木,紧接着他就知道要放5眼的;放2眼的,就知道跟着要放4眼的 … 这么循环下去,他就把所有加数之和为6的情况都遍历了一个遍,而且知识点掌握得也很牢固。
  你看通过教具这样的形式,孩子的学习兴趣大增,在摆放积木的同时也顺带把数学的知识点给学会了!
  所以,孩子学数学,兴趣很重要!在美国这边有一个专门的奥数竞赛,叫做 International Math Contest(IMC,国际数学竞赛),她们的题目就都是这种趣味数学,类似于下面这样的,用一条漫画小蛇将箱子包围住,从而计算箱子的宽度,有漫画、也有故事情节,
(IMC考试真题)
  我曾经带憨憨参加过这个竞赛,小家伙虽然不喜欢刷题,但是做这类趣味数学的题目时却兴趣十足,很值得推荐的!
  我下载了IMC趣味数学的竞赛真题,您在憨爸公号回复 IMC 就能得到这个数学竞赛往年真题下载,题目标注的是针对3~8年级,但对于国内小孩子来说,有的1年级就能做了。题型都是跟上面例子一样,很有趣的一些数学IQ题目,给孩子做做很有意思!

  ps. 公号改版后对话框不好找,您点击标题下方第二个“憨爸在美国”,然后“进入公众号”,点击底部“文章目录”左边的键盘图标,会出现像微信聊天一样可以打字的地方,在那里输入关键词就会有回复给您了。
  此外昨天推荐的一套由SONY教育出的《世界趣味数学挑战赛》的题册也很赞,分初级、中级和高级三个难度级别,也是利用趣味数学提高孩子数学思维和智商!点击这里查看!
  最后再唠叨一句,想让孩子爱上数学,你得想办法首先让数学变得有趣起来,当然了,这过程不容易,对家长是一种考验,不过如果你摸索到窍门后,孩子学习绝对会事半功倍的!
  本文转载自憨爸在美国的博客,点击阅读原文
  新浪声明:此消息系转载自新浪博客,新浪网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,文章内容仅供参考。
  实习编辑:fne 责任编辑:Sunday


ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本

ゼロ除算算法を使うとどうでしょうか???
有限の値が出るのですがいかがでしょうか・・


再生核研究所声明 436 (2018.7.30) : 数学教育の原理 ― 省察と改善

数学の教育の原理を省察しながら現状の問題点を指摘したい。これは主にゼロ除算の理解の遅れと数学界の在り様の問題点から発想した自然な想いである。もちろん、独断と偏見に満ちた見解であり、 文化とは重い歴史の産物であるから軽々しくは 考えられず、変える、改善は容易に進められない。これは遅れた日本のサッカーが中々世界規模のレベルに達せられないのと同様である。
何の為の数学か、数学教育の目標や理念を絶えず反芻し、在るべき姿を希求するのは当然大事である。それは 初心に帰れという言葉に表される。現在、理念の無い、行動や勢いで盲目的に動いている状況は世の世相とも言えるのではないだろうか。本末転倒の現象さえ多く見られる。真理を追究している者がデータを偽装したりして、あべこべの行動をとっているのは顕著な例である。
まず、数学教育の理念であるが、これについては考察したことがある。そこでまずふりかえって置きたい:
再生核研究所声明327(2016.10.18)  数学教育についての提案:
次で、数学教育の重要性、効用性について触れている:
再生核研究所声明313(2016.08.01) 良い数学教育の推進を
― 数学を通して、人類が交流でき、世には道理、秩序が 存在すると理解できるだろう。分かり易いスポーツを通して、ドラマを見て、芸術を通して理解するは 世に多いが、数学の効用をここでは強調したい。道理、秩序に対する認識には 数学の効用は大きく、上記 公正の原則の理解にも 大きく寄与するのではないだろうか。数学教育の充実を国際的な視点で提案したい。その留意点を纏めて置きたい:
1) 世には共通の論理があることを理解し、論理的な思考を学習する。
2) 数学の論理的な面には、美しさとuniverseの、世の秩序を述べていることを学ぶ。
3) 非ユークリッド幾何学の出現過程を良く学び、真理を追求する精神と感情と論理の関係を学ぶ。批判精神、理性、客観性について学ぶ。予断と偏見、思い込み、囚われやすい人間の精神を掘り下げる。
ここで、数学教育の充実とは、いわゆる数学の学力、問題解決に重点をおいた従来の学習ではなく、上記のような数学教育を通して身に付く数学の精神に重点をおいた教育である。他方数学の学力を付けることに偏りすぎたり、学力を競争させたりして 世に多くの数学嫌いな人たちを育てていることを大いに反省したい。数学の美しさ、楽しさを教えることが第一であると心がけなければならない。
数学愛好者の増大は かつて和算が広く民衆に普及していたように、環境にも優しく、人間の修行にも、精神衛生上も、また創造性を養い、考える力を育成するにも大いに貢献するのではないだろうか。囲碁や将棋、歌会、俳句会など良い趣味集団を構成しているが、数学愛好者クラブなど大いに進められるべきではないだろうか。新聞やテレビ、マスコミ、週刊誌などでもどんどん話題を取り上げ、また奨励されるべきではないだろうか。社会の浄化と低俗化防止にも貢献するのではないだろうか。―

と述べた。古くはプラトン学派の門に、幾何学知らざる者この門をくぐるべからず、ナポレオンが軍隊を強くするには数学の教育が大事であると述べていることや、現中国政府の数学重視の姿勢も注目される。
ここでは、明確な提案が閃いたので纏めて置きたい。まず現状の分析と問題であるが、数学は選別、能力を評価する重要な科目になっていて、受験勉強の強い枠に縛られてカリキュラムは相当に厳格に範囲が定められている。そのため限られた範囲での特訓の要素が強く、現実には理想的な教育の有り様からの乖離が甚だしい状態と言える。標語的には、ゆっくり面白いところを追求しようとすれば、そんなことでは、時間内に解答できない、そのようなものは型として、このように対応すれば良いと、薄っぺらな教育内容になり、多くの場合才能ある学生の みずみずしい知的好奇心を無くし、薄っぺらな学習で数学そのものを嫌う学生を多く育てている現実があると考えられる。これは創造性や好奇心を育てる教育と いわゆる学力をつけるための勉強の乖離の問題である。さらに顕著な事実として、高校までの数学と大学での数学の大きな乖離は 相当に広く認められる現象ではないだろうか。多くの高校生は、大学に入って、数学とはそんなに広く、深く、雄大なものであるかと知って驚くのではないだろうか? また、教育現場の感じも相当に違う感じを受けるだろう。
― このような乖離は、研究成果と学部教育の内容についても言えることに注意しておきたい ―。
背に腹は変えられない、受験勉強は無視できない現実であるから、この問題を改善する具体的な提案として、例えば、週1時間とか、月1時間、カリキュラムにとらわれない数学の時間を用意して、カリキュラムに関係する素材や、新しい話題、面白い歴史的な話題から題材をとり、本来数学の教育に求められるような方向での教育を行うようにする。このような時間は、先生の新鮮な研究、研修にも繋がる面があって 先生の柔軟な精神の涵養にも良いのではないだろうか。さらに視野を広げるためにも、いろいろな講演会の企画なども良いのではないだろうか? 提案したい。数理科学の文化の裾野を広げる努力をしたい。近年は教育・研究環境の厳しさと専門の深さ、困難さで、専門的に深くなりすぎて、数理科学など幅の広さや基礎への関わりが薄くなっているように感じられる。その様な事情を反映させて、教育が疎かになる傾向にもなっているのではないかと危惧される。成果が数字に表されるような貧しい教育である。
数学の教育については、下記も参照:
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明283 (2016.2.8)  受験勉強が過熱化した場合の危惧について
再生核研究所声明260 (2015.12.07) 受験勉強、嫌な予感がした ― 受験勉強が過熱化した場合の弊害
再生核研究所声明 187 (2014.12.8)工科系における数学教育について
以 上
上記は、もっともなことと追想される。そこで在るべき姿から乖離している現状を具体的に簡潔にふれたい:
1) 数学界の在り様として、あまりにも研究重視で、成果を急ぐような世相の中で、抹消の研究、細かすぎてあまり意味のない研究にはまり、基本的な在りようから乖離して、研究者の知的好奇心や真理の追究の心や 数学を楽しむような精神を弱め、いたずらに労力を費やして 数学の魅力や効用、良さが上手く研究・教育されていないのではないだろうか。
2) 余りに専門化して お互いにお互いの数学が理解できず、したがって評価もできず、分科会、分野に視野が限られて 数学としての理解が曖昧、盲目になっているのではないだろうか。これは進んだ結果の末梢的な現象と率直に評価すべきである。新規な世界を重視し、開拓するように心がけたい。
3) 数学の研究の高度化と称して、あまりにも深い、難しい研究課題が注目され、基本的で大事な課題や新規な研究課題がおろそかにされる傾向はないかと反省したい。公的資金をもって教育・研究として研究活動を行うからにはその社会的な意義を明らかにして、研究の大義を掲げるべきである。過去の経緯や、権威に基づいたものは尊重されるべきであるが、それらばかりではなく、その研究の意義を社会的にも絶えず明らかにすべきである。数学者は勝手に難しい問題に挑戦していて、自己満足に陥っているようなことはないだろうか。 ― 数学者はお互いに褒めあって囃し合っているが、我々にはそのような研究は何の意味もないという、かつての同僚の言葉が 想い出される。 ― 反省すべき点として、数学界最高の賞であるフィールズ賞でさえ、社会的な扱いは 殆ど無視されているようであり、数学界の存在は 社会的な存在としては 余りにも小さい現実を重く受け止めたい。
4) 数学の教育においても、数学を良きものとの感情から、ややもすると数学者のまずい教育の結果 世に数学嫌いを生み出し、また数学不信の世相を作っている現実が相当にあるのではないだろうか。 しばしば 数学者嫌いの世相が見られるのではないだろうかと危惧される。
要するに美しい数学を 芸術のように楽しみ、考え方も真理の追究の範として活かし、社会に活かすように、教育し、研究活動を行ないたいということである。
                                以 上
再生核研究所声明327(2016.10.18)  数学教育についての提案
次で、数学教育の重要性、効用性について触れている:

再生核研究所声明313(2016.08.01) 良い数学教育の推進を
― 数学を通して、人類が交流でき、世には道理、秩序が 存在すると理解できるだろう。分かり易いスポーツを通して、ドラマを見て、芸術を通して理解するは 世に多いが、数学の効用をここでは強調したい。道理、秩序に対する認識には 数学の効用は大きく、上記 公正の原則の理解にも 大きく寄与するのではないだろうか。数学教育の充実を国際的な視点で提案したい。その留意点を纏めて置きたい:
1) 世には共通の論理があることを理解し、論理的な思考を学習する。
2) 数学の論理的な面には、美しさとuniverseの、世の秩序を述べていることを学ぶ。
3) 非ユークリッド幾何学の出現過程を良く学び、真理を追求する精神感情と論理の関係を学ぶ。批判精神、理性、客観性について学ぶ。予断と偏見、思い込み、囚われやすい人間の精神を掘り下げる。
ここで、数学教育の充実とは、いわゆる数学の学力、問題解決に重点をおいた従来の学習ではなく、上記のような数学教育を通して身に付く数学の精神に重点をおいた教育である。他方数学の学力を付けることに偏りすぎたり、学力を競争させたりして 世に多くの数学嫌いな人たちを育てていることを大いに反省したい。数学の美しさ、楽しさを教えることが第一であると心がけなければならない。
数学愛好者の増大は かつて和算が広く民衆に普及していたように、環境にも優しく、人間の修行にも、精神衛生上も、また創造性を養い、考える力を育成するにも大いに貢献するのではないだろうか。囲碁や将棋、歌会、俳句会など良い趣味集団を構成しているが、数学愛好者クラブなど大いに進められるべきではないだろうか。新聞やテレビ、マスコミ、週刊誌などでもどんどん話題を取り上げ、また奨励されるべきではないだろうか。社会の浄化と低俗化防止にも貢献するのではないだろうか。―

と述べた。古くはプラトン学派の門に、幾何学知らざる者この門をくぐるべからず、ナポレオンが軍隊を強くするには数学の教育が大事であると述べていることや、現中国政府の数学重視の姿勢も注目される。
ここでは、明確な提案が閃いたので纏めて置きたい。まず現状の分析と問題であるが、数学は選別、能力を評価する重要な科目になっていて、受験勉強の強い枠に縛られてカリキュラムは相当に厳格に範囲が定められている。そのため限られた範囲での特訓の要素が強く、現実には理想的な教育の有り様からの乖離が甚だしい状態と言える。標語的には、ゆっくり面白いところを追求しようとすれば、そんなことでは、時間内に解答できない、そのようなものは型として、このように対応すれば良いと、薄っぺらな教育内容になり、多くの場合才能ある学生の みずみずしい知的好奇心 を失なわせ、薄っぺらな学習で数学そのものを嫌う学生を多く育てている現実があると考えられる。これは創造性や好奇心を育てる教育と いわゆる学力をつけるための勉強の乖離の問題である。さらに顕著な事実として、高校までの数学と大学での数学の大きな乖離は 相当に広く認められる現象ではないだろうか。多くの高校生は、大学に入って、数学とはそんなに広く、深く、雄大なものであるかと知って驚くのではないだろうか? また、教育現場の感じも相当に違う感じを受けるだろう。
― このような乖離は、研究成果と学部教育の内容についても言えることに注意しておきたい ―。
背に腹は変えられない、受験勉強は無視できない現実であるから、この問題を改善する具体的な提案として、例えば、週1時間とか、月1時間、カリキュラムにとらわれない数学の時間を用意して、カリキュラムに関係する素材や、新しい話題、面白い歴史的な話題から題材をとり、本来数学の教育に求められるような方向での教育を行うようにする。このような時間は、先生の新鮮な研究、研修にも繋がる面があって 先生の柔軟な精神の涵養にも良いのではないだろうか。さらに視野を広げるためにも、いろいろな講演会の企画なども良いのではないだろうか? 提案したい。数理科学の文化の裾野を広げる努力をしたい。近年は教育・研究環境の厳しさと専門の深さ、困難さで、専門的に深くなりすぎて、数理科学など幅の広さや基礎への関わりが薄くなっているように感じられる。その様な事情を反映させて、教育が疎かになる傾向にもなっているのではないかと危惧される。成果が数字に表されるような貧しい教育である。

数学の教育については、下記も参照:

再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明283 (2016.2.8)  受験勉強が過熱化した場合の危惧について
再生核研究所声明260 (2015.12.07) 受験勉強、嫌な予感がした ― 受験勉強が過熱化した場合の弊害
再生核研究所声明 187 (2014.12.8)工科系における数学教育について                 
以 上

再生核研究所声明187(2014.12.8)工科系における数学教育について

30余年 工科系で数学の教育に携わって来た者として、それらを回想して今後同じような経験をされる人たちの参考になるように省察して置きたい。
まず、工科系における数学教育の目標を抑えて置こう:
1) 工科系全般における表現の立場から、数学上の述語、概念、記号などは工科系を表現する言語として必要であるから、関係数学の習得は必要である。典型的な概念として、微積分の概念、行列の概念、微分方程式、ベクトル解析(勾配、回転、発散)、解析関数の概念などは必須の概念と考えられよう。
2) 計算機の普及、応用を待つまでもなく、論理の学習; 論理的に考え、推論して纏め、表現できるような精神の涵養に 数学教育の重要性があると考えられる。
3)高級に表現すれば、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については次を参照:

19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。

簡潔に述べれば、数学は 時間にも、エネルギーにもよらずに存在する神秘的な 関係の論理体系であるが、ユニバースは 数学を言語として構成されている という、信仰のような信念を抱いている。基本的な数学は ユニバースの基本的な様を表現しているのではないだろうか。すなわち、真理を追求する真摯な精神の涵養である。

それゆえに、工科系における数学教育の必要性は明らかである、それで、その明確な動機のもとで、数学教育に携われる工科系に属する数学の教師は、誠に充実感のする 社会的な使命を果たせる幸せな存在である。
担当の基本は、線形代数、微積分学、微分方程式、ベクトル解析、複素解析であろうが、それらは、理工科系の基本カリキュラムで、それらは、重要な概念を有していると考えられる。教える立場でも、ここをきちんと教えたいという、項目が多々存在する、楽しい数学である。
工科系で、生じる問題の基本は、工学 各学科の、期待、要請と 数学の専門家の担当する講義の仕方、カリキュラム内容との乖離で、しばしば問題が顕になる。上記、工科系における数学教育の目標について 科の先生方の反対意見は出ないと思われるが、近年、学生の基礎学力の大きな落ち込みの中で、科で直接必要、必須の言わば 1)の基本が疎かになり、科の教育に大きな障害が起きて、1)の強化、補充を数学教室に求めたり、科自身で補充の授業を準備する事態さえ招いている。数学教室で、科の要求する数学の内容を聞くと、相当に高級な現代的な数学の内容が広範に出てきて、対応できないような状況は よく見られる。体系的に見れば ちぐはぐ、また科の教員でも要求がバラバラな感じさえ受ける。もしそれらの要求を満たすようにするならば、辞書の項目の解説調になってしまい、数学者の好みである2)、3)項の要素が失われて、講義に熱が入らない気持ちになるのではないだろうか。― この観点が工科系における数学教育における問題の中心であると考えられる。
数学の教師の立場から見れば、自分の専門の研究に集中しすぎで、視野が狭く、工科系全般にわたる素養の貧しさを招き、しばしば独善的な講義スタイルになる傾向があるので、気をつけたい.

学科への対応の精神は、数学に分け与えられる時間数が極めて限られていて、しかも、要求される内容の豊富さを考えれば、講義内容を精選して、基礎の基礎、基本の基本をきちんと学習させ、多くの内容については、学生が必要に応じて、自分で学習できるようなるように教授するのが良いのではないだろうか。それには、まず、数学が楽しい、大いに有効であると 学生が感じられるような、そのような講義が望まれる。講義は全人格をかけた、交流の場であり、真理を追求する研究者の尊い姿が 学生への愛とともに 反映されるものでなくてはならない。学生による評価の問題で、教師が講義の有り様などいろいろ気遣い、板書やPDファイルなどの作成など講義の技術面などに関心が移っているような世相があるが、それらの営みの空虚さを指摘したい。そうではなくて、学生は、教師の学問に取り組む姿勢や、人生や社会に取り組む姿勢、全人格をみて教師を評価していることが分かるだろう。技術面のことよりは、研究者として、人間としての精進が肝要ではないだろうか。
人生とは何か、生きるということは どのようなことか、そのような問を忘れて久しいように感じられる世相ではないだろうか。学生は、いろいろな情報、勉学、就職関係の将来構想などなどで時間に追われ、教員も研究、教育に専念できず、さらに教育、研究の環境を悪化させる要務で忙しすぎて、何事じっくり取り組み、考察を深めるような貴重な時間を失っているように見える。学生時代には全人生を思考できるように 学生に自由を保証する精神が 大学教育の基本な配慮でなければならないと考える。― 学生時代は良かった、良い環境で、たっぷり自由な時間がとれた。
インターネットの普及で、いわゆる知識、単なる情報は、簡単にどこでも利用できる時代の到来は、カリキュラム、教育内容の精選と講義の有り様の変革をもたらし、自由の保証に明るい展望をもたらすのではないだろうか。その骨格として、講義、教育時間の縮小、休暇の増大、そのために一般教職員の大学の年間、1ヶ月間閉鎖、学生の休暇2ヶ月間を考えるのは良い出発点ではないだろうか。これらは既に、欧米の大学では相当に確立していて習慣になっていることも大いに参考にすべきではないだろうか。― 5年間ポルトガルのアヴェイロ大学で研究員として過ごしたが、何と8月は 大学の暦に 無かった。完全休暇である。土、日の休暇は当然で、水曜日は講義が無く、水曜日と金曜日は 昔の日本の土曜日のような調子で、金曜日午後には 多くの学生が、帰省するような情景であった。年中仕事に追われている 異常な日本の大学の有り様を見るにつけて、我々は大いに学び、大学の有り様を変革すべきだと考える。
そのような大幅な自由の下で、自主学習する風潮と日本のように 相当に学力などを気にして、詰み込み式授業の風潮のどちらが、長期的に見て優れているか、考えてみる必要があるのではないだろうか。ただし、自由の代償に 試験は相当に期間と時間を掛けて厳しくする風潮がある。
工科系に属する教員の担当学生数は、数学の所属部署で、最も多い状況にあり、ある意味で、数学を現実社会に活かす立場で それだけ大きな役割が有ると考えられる。教育ばかりではなく、入試に関与する部分も極めて大きく、入試業務は年中 心を傷めさせられる負担になっている場合が多いのではないだろうか。そもそも入試の有り様そのものの見直しを提案、問題提起しているが(再生核研究所声明20:大学入試センター試験の見直しを提案する),ポルトガルの制度を紹介して、関係者の検討を要望して置きたい:
有り様は簡単で、そもそも大学は入試業務を殆どせず、作成された資料を元に、選択するだけである。入試問題作成は国の機関が行い、入試は高校を会場に高校が期間を掛けて行なう。― このような入試で、個々の数学教員や、大学で膨大な仕事を課せられている日本の状況と比べて、唖然とさせられた。大きな仕事からの開放である。― 勿論、これは国立大学の場合であるが、私立大学などでも上記資料を参考にしているのではないだろうか。
さらに、女性数学者の割合が、殆ど自然に男女、同数であることは 数学の研究、教育、そして教室の雰囲気を日本のそれらとは相当に違ったものにしている。それらは、家庭と大学の仕事が両立出来る基礎があることを示しており、ポルトガルの大学は、相当に優雅であると表現されるだろう。7年目には 日曜日が週に有るように サバーティカルライトで1年間大学の仕事から解放される。それは、何を意味するだろうか。
以 上


0 件のコメント:

コメントを投稿