2018年8月21日火曜日

数学的由来和发展 (2018-08-21 08:27:39)

NEW !
テーマ:

数学的由来和发展

 (2018-08-21 08:27:39)数学是研究事物的数量关系和空间形式的一门科学。
   数学的产生和发展始终围绕着数和形这两个基本概念不断地深化和演变。大体上说,凡是研究数和它的关系的部分,划为代数学的范畴;凡是研究形和它的关系的部分,划为几何学的范畴。但同时数和形也是相互联系的有机整体。
  数学是一门高度概括性的科学,具有自己的特征。抽象性是它的第一个特征;数学思维的正确性表现在逻辑的严密上,所以精确性是它的第二个特征;应用的广泛性是它的第三个特征。
  一切科学、技术的发展都需要数学,这是因为数学的抽象,使外表完全不同的问题之间有了深刻的联系。因此数学是自然科学中最基础的学科,因此常被誉为科学的皇后。
  数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。

  数学概览

  数学是研究现实世界中数量关系和空间形式的科学。简单地说,就是研究数和形的科学。 
  由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。在 不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。
  刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率 的一般方法。
  虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。
  早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。
  开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。
  在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。
  16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。
  形的研究属于几何学的范畴。古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具。
  《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。
  中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几何的产生。
  欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。
  在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。
  在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。
   在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。
   十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视。
   微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论。第二次世界大战军事上的需要,以及大工业与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。
   力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识。
   十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派。特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道。
  数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。数学本身的内部需要也孽生了不少新的理论与分支。同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。
  在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。
  由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。
  但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。
  中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失。而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。机器的使用,不论中外都由来已久。但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。
  在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。解析几何与微积分的诞生,成为数学发展的一个转折点。17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。
  20世纪出现各种崭新的技术,产生了新的技术革命,特别是计算机的出现,使数学又面临一个新时代。这一时代的特点之一就是部分脑力劳动的逐步机械化。与17世纪以来数学之以围绕连续、极限等概念为主导思想与方法不同,由于计算机研制与应用的需要,离散数学与组和数学开始受到重视。 
  计算机对数学的作用已不限于数值计算,符号运算的重要性日趋明显(包括机器证明等数学研究)。计算机还广泛应用于科学实验。为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。代数几何是一门高度抽象化的数学,最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。总之,数学正随着新的技术革命而不断发展。    

   数学分支学科介绍 

   算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、计算数学、突变理论

ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・・・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本


再生核研究所声明 449(2018.8.21): この世とあの世 - 人工知能の進化によって
あの世とは 死後の世界として、想念上の世界と考えられよう。ところが人口知能の進化とともに不思議な世界と問題が現れつつあるので、考察をしておこう。
まず、人間は往々にして、消えていくことに対して嫌い、時として永遠の存在になりたいと志向しがちである。これは生命の基本定理である 生きて存在しなければ 始まらないという基本原則に根差している。古くはピラミッドの建設やミイラ作り、多くの志の基礎に存在する。しかしながら、それらの意義を改めて問う必要が起きている。それらの心の元をしっかり捉える必要がある。まず、次の状況を捉えよう:
再生核研究所声明 447(2018.8.17): 人工知能の進化と人間について:
人工知能は 未解決の数学の理論や物理法則なども どんどん明らかにして行くと同時に 人間自身についても究明していくだろう。人間とは何かという問いについて、1個の人間に対する問いと回答で人間を一つのシステムと考えたとき、出入力の関係からシステムを特定する観点からも 1個の人間の解明がどんどん進み、相当に人物を捉えられるようになるだろう。人造人間の出現について述べた 次も参照:
再生核研究所声明 403(2017.11.20):  私より私らしい私の出現 - アンドロイド
このような関心や進化は、人間の本質的な要求に関わっているので、留まることが無いのではないだろうか。 医学が人体の構造、機能をどんどん解明してきたように、人工知能は 人間の精神面での解明をどんどん進め、人工知能が人間以上に人間を知る時代が来るのではないだろうか。ひと昔まえ、唯物史観の哲学が流行ったが、情報が世界のすべてであるような世界観が広まるのではないだろうか。 要するに知的情報などが数値化されて 人口知能で解明されることが進むということである。
例えば、ニュートンとは何者かと問えば、ニュートンは何をやり、どのような影響を世界史に与えたかと問うが、生涯の記録から、このような問い、このような場面ではどのように対応するだろうか。それらの対応がどんどん 精しく明かにされてくるということである。アンドロイドのように どんどんニュートンの人物像を詳しく捉えられるようになるだろう。
そこで、次の時代には 人間とは何かとの問いが一段と進み、どんどん新しい世界が拓けてくるだろう。
医師や料理の分野などあらゆる分野に進出してくるのではないだろうか。 一言で言えば、人間がなすことの多くを人工知能が行う時代の到来である。 
アンドロイドなどの精密な存在は、人間の精神を不滅の存在ならしめ、また、既に生物的な存在を 受精卵や精子の保存で永続化させる生物学は すでに確立している。
盆に先祖さまを偲びたいと発想する場面では、 既にアンドロイドのような存在で生存中の多くを追想できると同時に相当な会話さえできる時代が近づきつつある。歌い手さんの素晴らしい情景は、さながら生存中と変わらないように再現も会話、対話も可能な時代を迎えている。ひと昔前、あの世と考えられた多くは人工知能の発達によってこの世の存在と区別できないような 状況を迎えている。消えて行った膨大な世界が何時でも再現出来て 現存在になり得る時代とは 一体どのように考えれば良いだろうか。あらゆる情報が整理され保存され、それが生命体のように生き生きと現れる時代である。- その時、人間はとてつもなく広い世界を覗ける時代で、自由の限りない拡大である。自我をしっかりさせ、情報、世界の選択による 統一的な存在として、我は何者かと絶えず問い続けることが重要になるだろう。 ― 広大な一面に御馳走の山を見たとき、自分に合った適切な食を選択しなければならないようにである。
大きな課題で混乱しそうであるが、従来、あの世とこの世は結構区別がついていた時代であったが、あの世とは この世の情報のことで、それらが再現されることで、2つの世界は混然一体の存在になりつつある。ピラミッドやミイラ、多くの記念碑は空しくなり、新しい時代に大きな変化を遂げる時代が 近づきつつある。― 遺族を偲ぶ盆の習慣など、遺族の方と会話さえでき、何でも想い出を再現できる時代の到来である。お墓とは、図書館の変形のような存在になる時代である。10年後、20年後に意見を表明できるシステムさえ確立している。
この世もあの世もこの世の情報であるが、 それらの中には想像によって作られた虚像、場合によっては意図的に作られた虚構も多いので、1個の人間はそれらの中で生きていく意味をしっかりさせていく必要がある。生きるということは どのようなことで、生きている意義とは何かと問い続ける必要がある。人間にとって真に意味のあること、価値あることとは何だろうか。多くの希望、願いが叶えられる時代とは 人間にとってどうなるだろうか。
以 上

再生核研究所声明 447(2018.8.17): 人工知能の進化と人間について

まず、人工知能について、概念を確認して置こう: 人工知能 - Wikipedia
概要[編集]:
人間の知的能力をコンピュータ上で実現する、様々な技術・ソフトウェア・コンピューターシステム[2]。応用例は自然言語処理(機械翻訳・かな漢字変換・構文解析等)[3]、専門家の推論・判断を模倣するエキスパートシステム、画像データを解析して特定のパターンを検出・抽出したりする画像認識等がある[2]。
1956年にダートマス会議でジョン・マッカーシーにより命名された。現在では、記号処理を用いた知能の記述を主体とする情報処理や研究でのアプローチという意味あいでも使われている。家庭用電気機械器具の制御システムやゲームソフトの思考ルーチンもこう呼ばれることもある。
プログラミング言語 LISP による「MAZE」というカウンセラーを模倣したプログラムがしばしば引き合いに出されるが(人工無脳)、計算機に人間の専門家の役割をさせようという「エキスパートシステム」と呼ばれる研究・情報処理システムの実現は、人間が暗黙に持つ常識の記述が問題となり、実用への利用が困難視されている。
人工的な知能の実現へのアプローチとしては、「ファジィ理論」や「ニューラルネットワーク」などのようなアプローチも知られているが、従来の人工知能[4]との差は記述の記号的明示性にある。その後「サポートベクターマシン」が注目を集めた。また、自らの経験を元に学習を行う強化学習という手法もある。
「この宇宙において、知性とは最も強力な形質である」(レイ・カーツワイル)という言葉通り、知性を機械的に表現し実装するということは極めて重要な作業である。
2006年のディープラーニング(深層学習)の登場と2010年代以降のMAZEデータの登場により、一過性の流行を超えて社会に浸透して行った。
2016年から2017年にかけて、ディープラーニングを導入したAIが囲碁などのトップ棋士、さらにポーカーの世界トップクラスのプレイヤーも破り[5][6]、時代の最先端技術となった。
人の生きるは、真智へ愛にある、人間は何でも真相、事実を知りたいと求めている、それは 人間の存在自身に基礎を置く原理と考えられる。 人工知能の進化は真相、事実の究明をどんどん進め、真相がひとりでに明らかになる時代を 必然的に迎えるだろう。
人工知能は 未解決の数学の理論や物理法則なども どんどん明らかにして行くと同時に 人間自身についても究明していくだろう。人間とは何かという問いについて、1個の人間に対する問いと回答で人間を一つのシステムと考えたとき、出入力の関係からシステムを特定する観点からも 1個の人間の解明がどんどん進み、相当に人物を捉えられるようになるだろう。人造人間の出現について述べた 次も参照:
再生核研究所声明 403(2017.11.20):  私より私らしい私の出現 - アンドロイド
このような関心や進化は、人間の本質的な要求に関わっているので、留まることが無いのではないだろうか。 医学が人体の構造、機能をどんどん解明してきたように、人工知能は 人間の精神面での解明をどんどん進め、人工知能が人間以上に人間を知る時代が来るのではないだろうか。ひと昔まえ、唯物史観の哲学が流行ったが、情報が世界のすべてであるような世界観が広まるのではないだろうか。 要するに知的情報などが数値化されて 人口知能で解明されることが進むということである。
例えば、ニュートンとは何者かと問えば、ニュートンは何をやり、どのような影響を世界史に与えたかと問うが、生涯の記録から、このような問い、このような場面ではどのように対応するだろうか。それらの対応がどんどん 精しく明かにされてくるということである。アンドロイドのように どんどんニュートンの人物像を詳しく捉えられるようになるだろう。
そこで、次の時代には 人間とは何かとの問いが一段と進み、どんどん新しい世界が拓けてくるだろう。
現在、評価、評価と賑わっているが、業績評価などはどんどん正確化され、相当に歴史的、客観的に明らかになり、政治的、意図的な評価は 恥ずべき人間の恥ずかしい行為として歴史的に明らかになるだろう。 その走りを出版社などの情報管理状況にどんどん現れていることが分かる。それは大規模に進んで行くだろう。
そう、楽器演奏なども、人間を越えて、素晴らしいことが可能になり、楽器演奏者の在り様は、かつての植字技術者などのように大きな影響を与えるのではないだろうか。
医師や料理の分野などあらゆる分野に進出してくるのではないだろうか。 一言で言えば、人間がなすことの多くを人工知能が行う時代の到来である。 
政治家の評価や芸術家の評価などに至れば 大きな新たな社会問題が起きて来るのではないだろうか。この辺の倫理問題も 今から人間とは何かの問とともに考察を深めておく必要が有るのではないだろうか。
以 上
再生核研究所声明 444(2018.8.14):  小・中・高校生に影響を与える初歩数学の出現 - ゼロ除算

一般向きにゼロ除算の解説を 4年間を越えて続けている:

数学基礎学力研究会 サイト:
○ 堪らなく楽しい数学-ゼロで割ることを考える。

しかるに 2018.8.11.10:35 突然に声明の全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。
数学としての実体は声明441の内容であるが、この声明の発想が異なる。小・中・高校生の数学のカリキュラム内容は相当に定着していて、変わりようがないと考えられているのではないだろうか。複素数の扱い、行列の扱い、ユークリッド幾何学の扱いなどは多少変化がみられるが確立している数学の大勢の内から、どのような素材を選択してどのくらい学習させるべきかなどの問題で 絶えず小さく変動するのは当然のことである。小・中の生徒の算数・数学などの素材などは 変わりようがないものと考えられているのではないだろうか。 ― 逆に見ると数学の研究の成果などは基礎教育に反映されないが、それは学部数学ですら、そのような状態とみられる。しかし、大学院レベルに至れば、教育内容は新しい研究成果の動向で変化していると見られる。しかるに、ぼんやり見ても物理や化学、生物学などの分野では 研究の進展で基礎教育の内容が 大きく変化している様は 驚くほどではないだろうか。それらの現象の特徴は、抽象的な基礎部門と現実の現象に結びつく応用展開の科学の相違を表していると考えられる。
しかるに、初等数学全般に大きな影響を与えるゼロ除算の分野ができてきたことに注意を喚起したい。 声明441の関与する部分を引用しよう:

再生核研究所声明 441(2018.8.9):  小・中・高校の数学教育の視点からのゼロ除算について
法華経3000巻の意義・教訓から、小・中・高校の数学教育の視点からのゼロ除算について感覚的に情念として触れてみたい。 初等数学教育において ゼロ除算の教育は改められるべきである。そもそも割り算、分数の意義、意味を正確にきちんと教育する必要がある。理解は正確に 実際当時6歳であった道脇愛羽さんが理解したように理解すれば、割り算の意味もゼロ除算の意味も明解になり、その影響と良き視点、世界の広がりは極めて大きい。除算の考えによる割り算の捉え方、すなわち、割り算とはたとえば10割る2とは10の中に2が幾つか入っているかと考えることが原点で、それは10から2を 何回引けるかということを意味する。我々はその詳しい方式を道脇方式として述べて、論文や解説で精しく述べている。既に割り算の計算方法、指導方法なども道脇裕氏によって具体的に提案されている。これは割り算の計算法の初期の指導法として本質的で極めて優れた方法に思えるので、広く活用されることを期待している。
そこで、大事なことは 永い神秘的な歴史を有するゼロ除算、ゼロで割る問題があっけなく解決してしまい、ゼロ除算はゼロであるという結果を導くことである。すなわち、1/0=0/0=a/0=0 である。ゼロで割るとは、割らないことと同じであるということになる。したがって、割りあてられた量もなく、ゼロである。ここで、ゼロで割ることの正確な意味を捉え、またゼロの意味をいろいろな視点からとらえる基礎を得ることになるだろう。ゼロのいろいろな意味を考える基礎も得られる。
次の段階で、関数が現れ、反比例の具体的な関数y=1/xが現れてくる段階になれば、その関数の原点での値は、ゼロ除算の結果から、それをゼロと考えることの自然性を学び、その意義の大きさはカリキュラムの進展とともに驚きの感情をもって学ぶことができるだろう。立体射影の概念と無限遠点における強力な不連続性は我々の数学と空間の初歩的で基本的な実体であるから、早期に学習しておきたい。内容は難しくなく、ユークリッド幾何学や三角関数の性質についても全般的な修正が求められる。その辺のカリキュラムの変更は時間を掛けて整然とした形に改められなければならないが内容自体はそうは難しくなく、しかも視野は大きく拓かれる。大学以降ではゼロ除算は数学の公理系の変更、追加のように扱われ初等数学全般の修正が求められる。象徴的な結果は\tan(\pi/2)=0、すなわちy軸の勾配はゼロであると述べられる。それは、幾何学、解析学全般に大きな影響を与える。微分方程式論や解析関数論などは本質的な修正が行われ、数学は完全化され、美しくなるだろう。
そこで、数学教育に携わる方は1歩進んで次の世代の数学を学ばれ、それを楽しく生徒たちに折りに触れて紹介され、生き生きとした数学の世界を 紹介して頂きたいと願っている。 数学はできていて 完成されたものではなく、未完の発展中の存在で未知の世界と盛んに関係している存在であるとしたい。そのような教育は真理を求める基本的な精神の涵養と育成にも大きく貢献するだろう。またゼロ除算発見の最大の意義は、人間が如何に独断と偏見に満ち、思い込んだら抜けられない存在であるか、我々の視野が如何に狭く、単細胞的な存在であるかを歴史的に学べるという点にあると言える。それには世の秀才や天才、偉大な人びとさえ例外でないことを示している。人間を知ることである。

以 上



再生核研究所声明 443(2018.8.13):  アリストテレス以来、二千年を越える封印、タブーの解消 - ゼロ除算

一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.11.11:20 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。
ゼロで割る問題、ゼロ除算は歴史家の分析によれば、最初に考えたのはアリストテレスで、物理的な意味から真空の比、ゼロ除算は不可能であると述べ その後の西欧文化に大きな影響を与えたと言う。狭義ではゼロの発見と算術の発見者Brahmagupta (598 -668 ?)がゼロ除算0/0 を考え、その後1300年を越えて、ゼロ除算は議論されてきたが、 現在でも未明の状態と考えられる。ゼロ除算は2014.2.2発見されて論文などにも公表されているが、そのあまりにも永い歴史のゆえに 中々認知されない状況が続いている。それが殆ど当たり前のことなのに、拒否、受け入れられない状況が続いている。最近も誤解を解消すべく解説をしている:
再生核研究所声明 434 (2018.7.28)  ゼロ除算の誤解と注意点
再生核研究所声明 437 (2018.7.30)  ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
そこで、タブーの理由を考察して置きたい。ゼロ除算の結果を複数のヨーロッパの数学者に直接話したときに、アリストテレスの名前をあげて、異様に感情むき出しで拒否されたのは 強力な体験である。表情をサッと変えられた方も結構居た。そのような話しは聞きたくないという強い意志表示であるから、単に数学の話しをしているようには 感じられないものである。それも20年来の友人たちの間での出来事である。背後には永く深いギリシャ文化の影響、無やゼロ、空を嫌う文化背景、無神論を発想しているような 深い拒否反応である。 日本でもゼロで割ってはいけないは永い伝統であるから 受け入れられないは あるが、ゼロについての不愉快な気持ちは 零点や消えること、無くなることなど 不愉快な気持ちが強いようである。
数学的には 簡単にゼロ除算は不可能であることが証明されてしまう事実と共に1/0 は 無限大のようなものであるとの確信が深いためであろう。それがゼロであると言われて天地が ひっくり変える様な驚きを感じるだろう。実際、基本的な関数y=1/x を考えて、xが小さく成っていく時、yの値がどんどん大きく発散している様子を思い浮かべるだろう。アリストテレスの世界観 連続性に反するので、そのような突飛なことは認められないと考えられてきた。そこで、ゼロ除算は 有る意味では神秘的な対象 になってしまう。実際ゼロ除算は、神秘的な問題と考えられてきた。
現在でも、インターネットの世界でもそのような扱いになっている。
永いタブーの理由は、無、ゼロ、空などの忌み嫌う感情、世の連続性に拘るギリシャ文化の強い影響、数学的に明解な 不可能であることの証明 があるためではないだろうか。実際には、最も簡単な方程式 ax =b の解として、分数b/a, 割り算を考えれば、有名なMoore-Penrose一般逆で 解は何時でも一意に存在して 1/0=0 であることは相当に基本的な考えて ゼロ除算は当たり前の周知の筈と考えられるが、上記の永い伝統、思い込みで それらは受け入れられず、沢山の意味付けや例を示されても、中々理解されない状況が続いていると考えられる。しかしながら、ゼロ除算は発見後3週間くらいで、ゼロ除算は割り算の意味から当たり前であるとの道脇親娘(当時6歳)の言明は誠に興味深い。
以 上

再生核研究所声明 442(2018.8.10):  ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.8.8:40 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は ゼロ除算の研究の重要性とその研究を進めるための各種協力の要請である。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
以 上

再生核研究所声明 441(2018.8.9):  小・中・高校の数学教育の視点からのゼロ除算について

一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
法華経3000巻の意義・教訓から、小・中・高校の数学教育の視点からのゼロ除算について感覚的に情念として触れてみたい。 初等数学教育において ゼロ除算の教育は改められるべきである。そもそも割り算、分数の意義、意味を正確にきちんと教育する必要がある。理解は正確に 実際当時6歳であった道脇愛羽さんが理解したように理解すれば、割り算の意味もゼロ除算の意味も明解になり、その影響と良き視点、世界の広がりは極めて大きい。除算の考えによる割り算の捉え方、すなわち、割り算とはたとえば10割る2とは10の中に2が幾つか入っているかと考えることが原点で、それは10から2を 何回引けるかということを意味する。我々はその詳しい方式を道脇方式として述べて、論文や解説で精しく述べている。既に割り算の計算方法、指導方法なども道脇裕氏によって具体的に提案されている。これは割り算の計算法の初期の指導法として本質的で極めて優れた方法に思えるので、広く活用されることを期待している。
そこで、大事なことは 永い神秘的な歴史を有するゼロ除算、ゼロで割る問題があっけなく解決してしまい、ゼロ除算はゼロであるという結果を導くことである。すなわち、1/0=0/0=a/0=0 である。ゼロで割るとは、割らないことと同じであるということになる。したがって、割りあてられた量もなく、ゼロである。ここで、ゼロで割ることの正確な意味を捉え、またゼロの意味をいろいろな視点からとらえる基礎を得ることになるだろう。ゼロのいろいろな意味を考える基礎も得られる。
次の段階で、関数が現れ、反比例の具体的な関数y=1/xが現れてくる段階になれば、その関数の原点での値は、ゼロ除算の結果から、それをゼロと考えることの自然性を学び、
その意義の大きさはカリキュラムの進展とともに驚きの感情をもって学ぶことができるだろう。立体射影の概念と無限遠点における強力な不連続性は我々の数学と空間の初歩的で基本的な実体であるから、早期に学習しておきたい。内容は難しくなく、ユークリッド幾何学や三角関数の性質についても全般的な修正が求められる。その辺のカリキュラムの変更は時間を掛けて整然とした形に改められなければならないが内容自体はそうは難しくなく、しかも視野は大きく拓かれる。大学以降ではゼロ除算は数学の公理系の変更、追加のように扱われ初等数学全般の修正が求められる。象徴的な結果は\tan(\pi/2)=0、すなわちy軸の勾配はゼロであると述べられる。それは、幾何学、解析学全般に大きな影響を与える。微分方程式論や解析関数論などは本質的な修正が行われ、数学は完全化され、美しくなるだろう。
そこで、数学教育に携わる方は1歩進んで次の世代の数学を学ばれ、それを楽しく生徒たちに折りに触れて紹介され、生き生きとした数学の世界を 紹介して頂きたいと願っている。 数学はできていて 完成されたものではなく、未完の発展中の存在で未知の世界と盛んに関係している存在であるとしたい。そのような教育は真理を求める基本的な精神の涵養と育成にも大きく貢献するだろう。またゼロ除算発見の最大の意義は、人間が如何に独断と偏見に満ち、思い込んだら抜けられない存在であるか、我々の視野が如何に狭く、単細胞的な存在であるかを歴史的に学べるという点にあると言える。それには世の秀才や天才、偉大な人びとさえ例外でないことを示している。人間を知ることである。
以 上



0 件のコメント:

コメントを投稿