2018年8月25日土曜日

【書籍】『「無」の科学』 宇宙から人体まで「無」をテーマにした科学エッセイ集 2014/9/10 2015/9/18 本

【書籍】『「無」の科学』 宇宙から人体まで「無」をテーマにした科学エッセイ集

 2015/9/18 

「無」をテーマにした科学の話、などというと、なんだか宇宙的なスケールを想像してしまいますが、本書における「無」はもうちょっと範囲が広め。ビッグバンや完全な真空の話もあれば、数字のゼロにまつわる話や絶対零度の話、男性の乳首なども「無」意味な存在として登場したりします。「無」の話だけど「無」意味ではない、そんな科学エッセイ集です。
「無」の科学 (英題:Nothing)
「無」とはいったい、うごごご! エクスデスも決戦前に本書を読んでおくべきでした。アルマゲストもグランドクロスも地球が丸いとか太陽系の惑星が並ぶ話とかですから、スケールが小さすぎです。そんなことで宇宙の法則を乱している場合ではありません。その真空波は"本当に真空"ですか?
そんなわけで、この夏場にちびちび読み進めていた本、『「無」の科学』を読み終えたので感想など書いていきます。最初に書いておきますとこの本、かなり楽しめました。

宇宙論から医学までなんでもありの「無」の話

本書は、「無」に関するさまざまな科学の話を集めたエッセイ集です。宇宙論から物理学や量子力学、医学や脳神経科学、生物学に数学とバリエーション豊かなラインナップのエッセイが25本収録されています。どれも「無」という共通のテーマを持ちながら、書いてあることは本当にバラバラ。
たとえば宇宙論の話。宇宙は「無」から生まれた、というのは割と最新の研究で、以前にもこの話は『宇宙が始まる前には何があったのか?』で読んでいました。「無」から「有」が生まれるなんてそんなバカな、と思われるかもしれませんが、そんなバカなことが起こるのが現実の宇宙なのです。「無」の話、なんていえば、こういう真っ暗な宇宙的なイメージの話を想像してしまうわけですが、実際そういう話も含まれています。
でも、そんな話ばかりではありません。たとえばプラセボ効果の話。プラセボ効果が「無」の話?と思われるかもしれませんが、何も効果が「無」いはずの薬が何らかの効果を生み出す、という観点なわけです。プラセボ効果は別段目新しい言葉ではないのですが、最新の研究ではボクのイメージするところとは違ってきているようです。
現在、薬の効果を実験する場合、二重盲検ランダム化比較試験、つまり被験者も実験担当者もどちらが本物かわからない2種類の薬を使ってプラセボ効果による反応を除外しようとしているわけですが、最新の研究では、それでもまだ不十分だということがわかってきているそうです。どちらも効果がない薬で試験したにもかかわらず、片方に有意にみえる効果が出てしまうことがあるそうな。要するに、一見すると効果があるように見える薬も、実はプラセボ増強剤でしかなかった、というケースがあるのです。ということは、我々が普段使っている薬の中にも、そういったものもあるのかもしれません。
さらに、プラセボ効果とは反対のノセボ効果の話も収録されています。つまり、何の効果も「無」いはずなのに、何らかの悪影響をもたらしてしまう効果のことです。「病は気から」とはいいますが、割と冗談では済まされないようです。謝って末期癌だと診断されてしまった患者が「もうダメだ」と思い込んで死んでしまったケースが実際にあったそうで、洒落になっていません。
厄介なノセボ効果ですが、さらに厄介なことに伝染することもあるのだといいます。集団のうちの1人が気分を悪くして倒れた場合、同じように気分を悪くして倒れてしまう連鎖反応があったりします。学生時代に校長先生の長い話の最中によくみた光景、というのはちょっと違うかもしれませんが、最近だといわゆる「放射脳」なんて揶揄される人たちが、特に体には問題がないのに体調不良を訴えたりするケースなどが近いでしょうか。これは昔から知られている集団心因性疾患と呼ばれるそうで、心理学の分野になりそうです。
興味深いノセボ効果の話ですが、残念ながら研究はあまり進んでいないそうです。というのも、実験をしようとすれば倫理的に問題にぶち当たってしまうわけですから、そりゃそうですよね。
他にも、数字のゼロにまつわる話とか、男性の乳首のように一見「無」意味な器官の話とか、何も考えて「無」いときに実は脳が活発に動いている話とか、ナマケモノのような「無」精な動物たちの話とか、宇宙の終焉の話とか。すべての話に興味を持つのは無理かもしれないけど、これだけあれば1つや2つは惹きつけてくれるはず。個人的には「数学はなぁ…」なんて思っていましたが、担当している方の文章が上手なので1番読みやすかったりしましたし。
本書の最後を締めくくるのは宇宙の終焉の話。ビッグバンではじまった宇宙の終焉については諸説あり、収縮されるビッグクランチだけでなく、ビッグリップやらビッグスナップやらビッグトリップやら。最近の宇宙の話でよく耳にするダークエネルギーを超えたファントムエネルギーなど、RPGのラスボス諸氏は必見ではないだろうか。メテオなんてスケールの小さいことをやっているからプレイヤーにダークマターをぶつけられてしまうのですよ。

科学だけど一般向けで読みやすくオススメ

そんなわけで『「無」の科学』。科学の話とはいえ、一般向けの科学雑誌『ニュー・サイエンティスト』誌に掲載されたものなので、ボクでも読めるくらいの内容になっています。1つ1つのエッセイは短めなので、空き時間などに読み進めやすいのもポイントが高いですね。といっても、聞きなれない物質名が並ぶとよくわからなくなったりはしますけれども。
ところで、この文章の中で何回「無」は登場したでしょうか? いや数えなくていいです。そんなのを数えるのは「無」意味だし時間の「無」駄なので、時間はもっと有意義に使いましょう。本書を読めば、「無」意味の意味に触れることもできましょう。エクスデスに投げる銭があるのなら、この本の購入費用にまわしてみてはいかがでしょうか。
「無」の科学

posted with amazlet at 14.09.10
ジェレミー・ウェッブ
SBクリエイティブ
売り上げランキング: 126,302


ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・・・・・
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所

ゼロ除算算法を使うとどうでしょうか???
有限の値が出るのですがいかがでしょうか・・・
ゼロ除算関係論文・本

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\usepackage{color}
\usepackage{url}
\newcounter{num}
\setcounter{num}{0}
%\setcounter{prop}{1}
%\newcommand{\Fg}[1][]{\thenum}

\newcommand\Ra{r_{\rm A}}

 \numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 448:\\  Division by Zero;\\
 Funny History and New World}
\author{再生核研究所}
\date{2018.08.20}
\maketitle
\newcommand\Al{\alpha}
\newcommand\B{\beta}
\newcommand\De{\delta}

\def\z{\zeta}
\def\rA{r_{\rm A}

{\bf Abstract: }  Our division by zero research group wonder why our elementary results may still not be accepted by some wide world and very recently in our Announcements: 434 (2018.7.28),
437 (2018.7.30),
438(2018.8.6), \\
441(2018.8.9),
442(2018.8.10),
443(2018.8.11),
444(2018.8.14),
in Japanese, we stated their reasons and the importance of our elementary results. Here, we would like to state their essences. As some essential reasons, we found fundamental misunderstandings on the division by zero and so we would like to state the essences and the importance of our new results to human beings over mathematics.

We hope that:
close the mysterious and long history of division by zero that may be considered as a symbol of the stupidity of the human race and open the new world since Aristotle-Eulcid.

From the funny history of the division by zero, we will be able to realize that

 human beings are full of prejudice and prejudice, and are narrow-minded, essentially.

\medskip
\section{Division by zero}

The division by zero with mysterious and long history was indeed trivial and clear as in the followings:
\medskip

By the concept of the Moore-Penrose generalized solution of the fundamental equation $az=b$, the division by zero was trivial and clear  as $b/0=0$ in the {\bf generalized fraction} that is defined by the generalized solution of the equation $az=b$.

Note, in particular, that there exists a uniquely determined solution for any case of the equation $az=b$ containing the case $a=0$.

People, of course, consider as the division $b/a$ that it is the solution of the equation $ az =b$ and if $a=0$ then $0 \cdot z =0$ and so, for $b\ne0$ we can not consider the fraction $a/b$. We have been considered that the division by zero $b/0$ is impossible for mysteriously long years, since the document of zero in India in AD 628. In particular, note that Brahmagupta (598 -668 ?) established  four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brhmasphuasiddhnta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is right and suitable. However, he did not give its reason and did not consider  the importance case $1/0$ and the general fractions $b/0$. The division  by zero was a symbol for {\bf impossibility} or to consider the division by zero was {\bf not permitted}. For this simple and clear conclusion, we did not definitely consider more on the division by zero. However, we see many and many formulas appearing the zero in denominators, one simple and typical example is in the function $w=1/z$ for $z=0$.
We did not consider the function at the origin $z=0$.

In this case, however, the serious interest happens in many physical problems and also in computer sciences, as we know.

When we can not find the solution of the fundamental equation $az=b$, it is fairly clear to consider the Moore-Penrose generalized solution in mathematics. Its basic idea and beautiful mathematics will be definite.
Therefore, we should consider the generalized fractions following the Moore-Penrose generalized inverse. Therefore, with its meaning and definition we should consider that $b/0=0$.

It will be very  curious that we know very well the Moore-Penrose generalized inverse as a very fundamental and important concept, however, we did not consider the simplest case $ az =b$.

Its reason may be considered as follows: We will  consider or imagine that the fraction $1/0$ may be like infinity or ideal one.

For the fundamental function $W =1/ z $ we did not consider any value at the origin $z = 0$. Many and many people consider its value by the limiting like $+\infty $ and  $- \infty$ or the
point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or
based on the basic idea of Aristotle.  --
 For the related Greece philosophy, see \cite{a,b,c}. However, as the division by zero we have to consider its value of
the function $W =1 /z$ as zero at $z = 0$. We will see that this new definition is valid widely in
mathematics and mathematical sciences, see  (\cite{mos,osm}) for example. Therefore, the division by zero will give great impacts to calculus, Euclidian geometry,  analytic geometry, complex analysis and the theory of differential equations in an undergraduate level and furthermore to our basic ideas for the space and universe.

 For the extended complex plane, we consider its stereographic  projection mapping as the Riemann sphere and the point at infinity is realized as the north pole in the Alexsandroff's one point compactification.
The Riemann sphere model gives  a beautiful and complete realization of the extended complex plane through the stereographic projection mapping and the mapping has beautiful properties like isogonal (equiangular) and circle to circle correspondence (circle transformation). Therefore, the Riemann sphere is a very classical concept \cite{ahlfors}.
\medskip

Now, with the division by zero we have to admit the strong discontinuity at the point at infinity. To accept this strong discontinuity seems to be very difficult, and therefore we showed many and many examples for giving the evidences over $800$ items.

\medskip

We back to our general fractions $1/0=0/0=z/0=0$ for its importances.

\medskip

H. Michiwaki and his 6 years old daughter Eko Michiwaki stated that in about three weeks after the discovery of the division by zero that
division by zero is trivial and clear from the concept of repeated subtraction and they showed the detailed interpretation of the general fractions. Their method is a basic one and it will give a good introduction of division and their calculation method of divisions.

 We can say that division by zero, say $100/0$ means that we do not divide $100$ and so the number of the divided ones is zero.

\medskip

Furthermore,
recall the uniqueness theorem by S. Takahasi on the division by zero:
\medskip

 {\bf  Proposition 1.1 }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d  \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}
 Note that the complete proof of this proposition is simply given by  2 or 3 lines. 
 In the long mysterious history of the division by zero, this proposition seems to be decisive.
Indeed,  Takahasi's assumption for the product property should be accepted for any generalization of fraction (division). Without the product property, we will not be able to consider any reasonable fraction (division).

Following  Proposition 1.1, we  should {\bf define}
$$
F (b, 0) = \frac{b}{0} =0,
$$
and consider, for any complex number $b$, as $0$;
that is, for the mapping
\begin{equation}
W = f(z) = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined from the form}).

\medskip

Furthermore,
the simple field structure containing division by zero was established by M. Yamada.
\medskip
In addition, for the fundamental function  $f(z) = 1/z$, note that
the function is odd function
$$
f(z) = - f(-z)
$$
and if the function may be extended as an odd function at the origin $z=0$, then the identity $f(0) = 1/0 =0$ has to be satisfied. Further, if the equation
$$
\frac{1}{z} =0
$$
has a solution, then the solution has to be $z=0$.
\medskip


\section{Division by zero calculus}

As the number system containing the division by zero, the Yamada field structure is complete.

  However, for applications of the division by zero to {\bf functions}, we  need the concept of the division by zero calculus for the sake of uniquely determinations of the results and for other reasons.

For example,  for the typical linear mapping
\begin{equation}
W = \frac{z - i}{z + i},
\end{equation}
it gives a conformal mapping on $\{{\bf C} \setminus \{-i\}\}$ onto $\{{\bf C} \setminus \{1\}\}$ in one to one and from \begin{equation}
W = 1 + \frac{-2i}{ z - (-i)},
\end{equation}
we see that $-i$ corresponds to $1$ and so the function maps the whole $\{{\bf C} \}$ onto $\{{\bf C} \}$ in one to one.

Meanwhile, note that for
\begin{equation}
W = (z - i) \cdot \frac{1}{z + i},
\end{equation}
if we enter $z= -i$ in the way
\begin{equation}
[(z - i)]_{z =-i} \cdot  \left[ \frac{1}{z + i}\right]_{z =-i}  = (-2i)  \cdot 0=  0,
\end{equation}
we have another value.
\medskip

In many cases, the above two results will have practical meanings and so, we will need to consider many ways for the application of the division by zero and we will need to check the results obtained, in some practical viewpoints. We referred to this delicate problem with many examples.


Therefore, we will introduce the division by zero calculus that give important values for functions.  For any Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{-1}  C_n (z - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero
\begin{equation}
f(a) =  C_0.
\end{equation}
Note that here, there is no problem on any convergence of the expansion (2.5) at the point $z = a$, because all the terms $(z - a)^n$ are zero at $z=a$ for $n \ne 0$.
\medskip

For the correspondence (2.6) for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering the formal derivatives in (2.5), we {\bf can define any order derivatives of the function} $f$ at the singular point $a$; that is,
$$
f^{(n)}(a) = n! C_n.
$$

\medskip
{\bf Apart from the motivation, we  define the division by zero calculus by (2.6).}
 With this assumption, we can obtain many new results and new ideas. However, for this assumption we have to check the results obtained  whether they are reasonable or not. By this idea, we can avoid any logical problems.  --  In this point, the division by zero calculus may be considered as an axiom.
\medskip
This paragraph is very important. Our division by zero is just definition and the division by zero is an assumption. Only with the assumption and definition of the division by zero calculus, we can create and enjoy our new mathematics. Therefore, the division by zero calculus may be considered as a new axiom.

 Of course, its strong motivations were given. We did not consider any value  {\bf at  the singular point} $a$ for the Laurent expansion (2.5). Therefore, our division by zero is a new mathematics entirely and isolated singular points are a new world for our mathematics.
We had been considered properties of analytic functions {\bf  around their isolated singular points.}

The typical example of the division zero calculus is $\tan (\pi/2) = 0$ and the result gives great impacts to analysis and geometry.
See the references for the materials.
\medskip

For an identity, when we multiply zero, we obtain  the zero identity that is a trivial.
We will consider the division by zero to an equation.

For example, for the simple example for the line equation on the $x, y$ plane
$$
 ax + by + c=0
$$
we have, formally
$$
x + \frac{by + c}{a} =0,
$$
and so, by the division by zero, we have, for $a=0$, the reasonable result
$$
x = 0.
$$

However, from
$$
\frac{ax + by}{c} + 1 =0,
$$
for $c=0$, we have the contradiction, by the division by zero
$$
1 =0.
$$
 For this case, we can consider that
$$
\frac{ax + by}{c} + \frac{c}{c} =0,
$$
that is always valid. {\bf In this sense, we can divide an equation by zero.}

\section{Conclusion}

Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

We have to arrange globally our modern mathematics with our division by zero  in our undergraduate level.

We have to change our basic ideas for our space and world.

We have to change globally our textbooks and scientific books on the division by zero.

From the mysterious history of the division by zero, we will be able to study what are human beings and about our narrow-minded.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.

\bibitem{ass}
H. Akca, S. Pinelas and S. Saitoh, The Division by Zero z/0=0 and Differential Equations (materials).
International Journal of Applied Mathematics and Statistics, Int. J. Appl. Math. Stat. Vol. 57; Issue No. 4; Year 2018, ISSN 0973-1377 (Print), ISSN 0973-7545 (Online).

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.


\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18april}
H.  Okumura and S. Saitoh,
Harmonic Mean and Division by Zero,
Dedicated to Professor Josip Pe$\check{c}$ari$\acute{c}$ on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

\bibitem{os18e}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG)(in press).

\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.


\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer)

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{s18}
S. Saitoh, Division by Zero Calculus (Draft) (210 pages): http//okmr.yamatoblog.net/


\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{a}
https://philosophy.kent.edu/OPA2/sites/default/files/012001.pdf

\bibitem{b}
http://publish.uwo.ca/~jbell/The 20Continuous.pdf

\bibitem{c}
http://www.mathpages.com/home/kmath526/kmath526.htm


\end{thebibliography}

\end{document}

ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
                     
割り算のできる人には、どんなことも難しくない
                           
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
                                                          
ベーダ・ヴェネラビリス(アイルランドの神学者)

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より

Please look the papers:
Reality of the Division by Zero z/0=0
DOI:
10.12732/ijam.v27i2.9.

Albert Einstein:

Blackholes are where God divided by zero.
I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
無限遠点は、実は数で0で表されていた。

地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0(628年→2014年2月2日)

リーマン球面における無限遠点は、実は、原点0に一致していました。

地球人はどうして、ゼロ除算1300年以上もできなかったのか? 
2015.7.24.9:10
意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。
生態系では、人類が がん細胞であった とならないとも 限らないのでは?
Einstein's Only Mistake: Division by Zero
何故ゼロ除算が不可能であったか理由
                                                
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。

Matrices and Division by Zero z/0 = 0

直線上を どこまでも行ったら、どこに行くでしょうか? 驚くべきことに 行き先があり、意外なところで 止まる。 これすごいことでは? 下記の図をよく見て、美しい解釈を考えてください。
我々の空間は実は そうなっていたと言えると思います。簡単な論文ですが、新らしい世界を拓いている(2016.7.24:06:21): (2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
2つの0を足しても一つのゼロです:

『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html …… →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
地球平面説→地球球体説 地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説:アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
ゼロ除算の証明・図|ysaitoh|note(ノート)  https://note.mu/ysaitoh/n/n2e5fef564997

ゼロ除算の論文が2編、出版になりました:
再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 
https://ameblo.jp/syoshinoris/entry-12287338180.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html
Division By Zero(ゼロ除算)1/0=0、0/0=0、z/0=0
ゼロ除算(ゼロじょざん、division by zero)1/0=0、0/0=0、z/0=0

ソクラテス・プラトン・アリストテレス その他
https://ameblo.jp/syoshinoris/entry-12328488611.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて
https://ameblo.jp/syoshinoris/entry-12348847166.html

再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
再生核研究所声明 417(2018.2.23):  ゼロ除算って何ですか - 中学生、高校生向き 回答
再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

2018.3.18.午前中 最後の講演: 日本数学会 東大駒場、函数方程式論分科会 講演書画カメラ用 原稿
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より
再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算
再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681

Einstein's Only Mistake: Division by Zero


0 件のコメント:

コメントを投稿