“数学大国”向“数学强国”始于重视数学(下) |
■苗东升 李世煇
恩格斯在《反杜林论》中说:“变数的数学——其中最重要的部分是微积分。”冯·诺依曼说:“微积分是近代数学中最伟大的成就,对它的重要性作怎样的估计都不会过分。”可见微积分在数学中的重要性。人们通常说的“微积分”由方法和原理两部分构成,原理部分是微积分的核心。微积分原理的内容就是揭示微分和积分方法正确的机理,意义在于据此揭示更多微分和积分方法,从而更好地为科技发展服务。
可现行微积分却存在着方法的正确和原理的错误的矛盾。马克思在《数学手稿》中指出:“这个数学上正确的结果,是基于在数学上根本错误的假设。”牛顿和莱布尼兹终其一生未能从根本上解决这一矛盾。现行微积分原理是1821年由数学家柯西创建的,后来又经过黎曼等数学家的发展形成的。但现行微积分原理在逻辑上仍不能自圆其说,对其质疑也从未间断,如法国数学家泊松(Siméon Denis Poisson,1781—1840)、德国数理逻辑学家哥德尔(Kurt Godel,1906—1978)、美国数学家鲁滨逊(Abraham Robinson,1918—1974)等,均质疑过现行微积分原理。
值得注意的是,我国数学家丁小平先生自2009年开始系统整理自己三十余年的微积分研究成果,用铁的证据和严密的逻辑指出了现行微积分原理的错误,并从工科和理科两个层面重建了更为科学的新微积分原理。工科层面的微积分原理实现了科学性和习惯性的统一,它与牛顿创立微积分以来353年的数学和自然科学,乃至工程技术理论能够充分吻合;理科层面的微积分原理实现了现代性与历史性的统一,它既可以使数学乃至自然科学在一个新的基础上实现革命性的进步,又恢复了莱布尼兹微积分原理的简洁性。
丁小平先生1962年出生于一个革命家庭。通过自学,1977年15岁的他参加了“文革”后的首届高考,就读于佳木斯农业机械学院。大学期间担任校学生会领导,毕业前夕,有舍己救人事迹。工作后,担任大型国企团总支书记。后分别考取清华大学工学硕士研究生、中央民族学院哲学硕士研究生和北京大学理学硕士研究生,并分别就读于上述学校。
2011年10月11日,丁小平先生在《科技创新导报》发表了《关于现行微积分原理的再思考》。文章发表后引起了媒体关注,人民网等媒体以《杨振宁预言今成现实:中国惊现诺贝尔级数学成果》进行了报道。同年,丁小平先生所撰写的《新型微积分原理》获得第四届国际数学科学大会(The Fourth International Conference on Mathematical Sciences,2012)学术委员会的审核和公认,并受邀宣读论文,因故未能成行。越是获得肯定,丁小平先生越是谨慎,他就自己研究的问题与微积分研究领域的院士进行了细致讨论,以期避免研究上可能出现的失误。
2015年12月,丁小平先生在《前沿科学》上发表了《浅谈现行微积分原理的错误》;2016年5月,中国人民大学数学研究会组织“重新审视微积分原理系列学术报告会”,邀请了微积分研究领域的权威林群院士和张景中院士以及丁小平先生作学术报告。丁小平先生在报告中说:“微积分方法的行之有效,并不能证明现行微积分原理的正确。现行微分原理在导数、积分、求解方面都存在错误,结构也是扭曲的。”之所以如此,“原因在于现行数学科学的数—形模型描述不了微积分原理”。同年6月,《中国科学报》对审视微积分原理的系列报告进行了相关报道,在科学界引起更广泛影响。2016年12月、2017年9月,《前沿科学》又陆续发表了丁小平先生的《略论作为微积分原理完善的实变函数》与《微分之讲授》两篇论文。文章指出了实变函数理论中的根本性错误,以及在普及新数—形模型之前应如何正确讲解微积分原理的思路。
对于丁小平先生的研究工作,国内外学者均给予了高度的评价,其中不乏皇家科学院院士和数学分析领域的权威学者。
微积分原理由牛顿和莱布尼兹首创,现行微积分原理是以柯西为代表的众多数学家集体智慧的结晶。因此,批评现行微积分原理难免给人以蚍蜉撼树之感,人们首先在情感上不能接受。然而,承认学术权威,禁止科学批评,等于熄灭科学发展的动力。在自由公平的学术殿堂里,任何观点都应在“持之有故,言之成理”的准则下,为自己的存在辩护,或者放弃存在的权利。科学不能拒斥批评,只有接受批评和实践的检验科学才能不断发展。
在无科研经费支持和情报交流的情况下,丁小平先生几十年来孜孜不倦地从事科研工作和校外教育活动。在讲到自己的追求时,丁小平先生说:“我从事科研一不为当官,二不为发财,就是要通过己之所学让祖国更加强大,让人民更加幸福。在为人民服务的奋斗过程中我享受到了无以伦比的崇高和自豪。”丁小平先生除从事繁重的研究工作外,还坚持义务教学。教授内容除微积分外还包括自然辩证法等课程。由于长期超负荷的劳动,丁小平先生十年前头发就全白了,但他仍夜以继日地工作,他希望能在有生之年尽可能多地为人民作些贡献。基于对祖国和人民的挚爱,2004年2月5日,丁小平先生接受千龙网记者蒲红果采访时,不顾个人安危,揭露了敌对势力在华雇佣网络特务从事文化侵略一事,此后,他便成为敌对势力迫害的对象。丁小平先生的遭遇证明了敌人的险恶用心。为此,他总是利用一切机会教导学生,“必须要坚决维护中国共产党的执政地位,拥护以习近平为核心的党中央的领导。如果中国共产党失去执政地位,就可能发生内战,人民就将遭受灭顶灾难”。
“往者不可谏,来者犹可追。”陆家羲现象令人深思,造成的损失是难以估量的。丁小平先生所解决的问题是数学界历时353年尚未解决的问题,其难度和价值应不低于诺贝尔奖级别,但他的处境比当年的陆家羲先生还要艰难。丁小平先生的成果亟待有关部门鉴定推广,这既有利于促进数学研究蓬勃发展,也是科技发展迫切需求。故有识之士呼吁,绝不能再让“陆家羲现象”重演了。
数学界有个著名的“陈省身猜想”,即:“中国将成为21世纪的数学大国。”张伟平院士还记得陈省身先生对自己的叮嘱:“让中国的数学站起来。”我们相信,在党和国家领导人的殷切关心下,在科教工作者的共同努力下,陈省身先生的殷切希望必将实现,我国必将从“数学大国”发展成为“数学强国”!
(苗东升系中国人民大学哲学院教授,李世煇系中科院地质地球所工程地质力学重点实验室〈现为页岩气与地质工程院重点实验室〉客座研究员)
《中国科学报》 (2018-08-27 第7版 观点)
更多阅读
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明432(2018.7.15):無限に広がった平面を捉える4つの考え方
無限に広がった平面の概念は 2200年以上前にユークリッドによって捉えられ、ユークリッド幾何学が体系づけられた。それはユークリッド原論と呼ばれる世界最初の学術書とされ、聖書とともに世界史上の超古典である。無限に広がった空間とは砂漠の広大な広がりから生まれた概念とされるが、特徴は平行線の公理、すなわち、交わらない2直線、平行線の存在する空間で、それは三角形の内角の和が180度、平角をなすとも表現される。ユークリッドの壮大な構想を振り返りたい。しかしながら、この事実は既に疑いをもたれ、平行線の公理を避ける様に原論は構成されているという。ともあれこの空間の考えは4つ述べる無限に広がった平面に対する発想の基本の第1のものである。
ユークリッドの不安は2000年を経て疑われ、3人の巨人によって 非ユークリッド幾何学が発見された。その物語はあたらしい幾何学として述べられ 感銘深い世界史上の事件と捉えられる。平行線の存在が 否定される幾何学が現れてきた。同時に数学とは何かと問われ、絶対的な真理としての数学から、数学とは公理系から出発して論理的に展開される理論体系であって、真偽や価値とは無関係の関係からなる理論体系であると変化した。初期には抽象的な変な世界の数学ではないだろうかと考えられたが、現在ではユークリッド幾何学ではない、非ユークリッドの幾何学が展開されていると考えられる。ちょうど数学の基礎を与える解析関数論の世界では、複素平面上に球面を載せて立体射影の対応で平面を写せば、直線を円の1種と見なせば、平面上の円も直線も立体射影で球面上の円に写るという美しい対応関係が成り立つ。この対応でユークリッド平面全体は球面上の北極を除いた全体と1対1の対応をすることが簡単に分る。直線のいずれの方向でも無限の彼方に行けば、北極点に対応する点に到達する様を見ることができる。そこで平面の無限の彼方を想念上に存在するものとして無限遠点と名付けて平面に無限遠点を加えて拡張平面と考える。すると拡張平面は全体として球面全体と1対1に対応して美しい世界が現れる。立体射影で円は円に対応し、写像は交わる角を不変に保つなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を一方向に行けば円をくるくる回るように、無限遠点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。そう発想できる。
この拡張平面の考え方が第2の考え方である。平面のすべての方向の先に無限遠点が存在して球面上で見れば その想像上の点は北極に対応するという。
ところが 2014年2月2日に発見されたゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性をもって、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
これが第3の無限平面の捉え方である。強力な不連続性のある空間。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へ に写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
第2の型では もし、x軸の正の方向にどんどん進んで行けば、やがて無限遠点に達しは それは負の無限と一致しているから、無限遠点を経由して戻って来るということになる。しかしながら、第3の型では、負の方向とは関係なく、無限の彼方に行けば突然原点に戻るという世界になる。第4の型では、正の無限の彼方に行けば、それは原点に連続的に対応しているから、ゼロと無限は一致しているから、xの正軸は閉曲線に写って連続的に閉じていて、負軸も同等に閉曲線に写って連続的に閉じている。
現在、第3と第4の何れが拡張された全平面のモデルとして適切であるかを問題にしている。 如何であろうか。
以 上
再生核研究所声明 450(2018.8.22): 水前寺清子様に呼応して - 雄たけび
雄たけびとして、谷亮子柔道選手の金メダル獲得の際の満面喜びのシーン、北島康介水泳選手の金メダル獲得の際の発言、超気持良いなどの叫びが思い出される。下記の歓喜、凄い感銘をうけて、呼応する形で 湧いてきた情念を思いのままに表現したくなった。
(水前寺清子様、坂本冬美様、それに 皆さん、歌 素晴らしかった。 伊東さんの紹介も 味わいが有りますね。素晴らしい日本の歌:NHK 新BS 日本の歌、 素晴らしい。日本の歌謡界のレベルは 高いですね。 ― 雄たけび: 雄叫び ・ 叫び ・ 怒号 ・雄 嘶き ・ 絶叫 ・ 雄たけび ・ ときの声 ・ 鬨の声 ・ 勝ちどき ・ 歓声 ・ 喚声 ・ 叫び声)。
清子様の歌詞に 男は、泣いてはいけない、ほれなきゃいけない、天下を取れ と凄い言葉がある、まさか数学で天下を狙うことは 想像もできない程に凄い天才や秀才たちの集まりの世界、能力も足りなく小さな存在である立場では思いもよらないことと発想するだろう。ところが世には 偶然やまぐれ当たりがあるから、面白い。それは、一般の方からの質問 100/0 の意味を問われて 真面目に深く考えて、偶然に発見したものである。いわゆるゼロ除算、ゼロで割ることを考える、古い歴史をもつ神秘的な問題に対する あまりにも簡単な発見である。それが、アリストテレス、ユークリッド以来の空間の発見に繋がり、初等数学全般の修正を求めているから、 天下取りより はるかに愉快な事件ではないだろうか。 世界の初等数学全般を変更して、20億人以上が理解して 新しい数学、世界の出現に驚嘆するだろう。内容は簡単に 真直ぐに立った電柱の勾配は、y軸の勾配はゼロであると述べられる。 数式で表現すれば、
1/0=0/0=z/0= \tan(\pi/2)=0
と簡潔に述べられる。簡単な関数y=1/xの原点x=0における値はゼロである。これはゼロと無限大の微妙な関係を捉えている。それは人生とは何かという問いに対して 新しい世界観を示している。またゼロ除算の歴史は 人間とはどのようなもので、人間が如何に独断と偏見に満ちた存在で、人間の愚かさを良く示している。数学的な内容について、次を追記して置こう:
再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
○ 堪らなく楽しい数学-ゼロで割ることを考える。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
次も参照:
再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
再生核研究所声明 437 (2018.7.30) : ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6): ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
以 上
再生核研究所声明 430(2018.7.13): 古典的なリーマン球面に代わるHorn Torusの出現について
ロシアの若き研究者 V. Puha 氏が古典的なリーマン球面に代わる空間のモデルとしてHorn Torusを提案して来たのは 6月16日だから新世界が現れてまだ1カ月も経っていないことになる。ちょうど論文原稿の基ができたところである。ここ1カ月間声明も珍しく休んでいた事実からしても 異常に集中して興奮していた状況が良く分かる。論文も英文声明も発表するつもりであるから、ここでは一般向きに心情面での解説を行って置きたい。これは情念に突き動かされていると言える。書かなければならず、書きたい情念である。
そもそも我々の空間、平面の認識はユークリッドに始まり、現代人は一様に平面の認識を抱いていると考えられる。限りなく広がる平面と言えば、多くの人の考えは同じではないだろうか。机の上に一枚の例えばA4版の紙が置かれていれば、それを4方向に限りなく伸ばして行った平面を想像するだろう。限りなく伸ばす、それが問題である。そして、その平面上でユークリッド幾何学を考えてきた。それは2200年以上前にユークリッドが考えた空間である。その時の有名な事実は、三角形の内角の和は180度、平角である。これは平行線の一意存在性を保証するユークリッドの公理とも呼ばれている。この公理は根本的に問われ、幾何学とは何か、数学とは何かの問題を提起し、2000年を経て、平行線の公理を満たさない非ユークリッド幾何学が出現した。非ユークリッド幾何学の出現の物語は極めて感銘させるものである。便利な時代 幾らでも関係情報は手に入るから、折に触れて学んで置きたい。如何に新しい概念を得ることが困難であるかを良く示している。本当の、真の創造である。新しい概念を得る困難さである。
ところがその非ユークリッド幾何学であるが、ユークリッド幾何学に馴染んできた人々がユークリッド幾何学でない幾何学と言われれば、そんなものは想念上のもので意味がないのではないだろうかと 多くの人は 初期には発想したと考えられる。ところがしばらくすると、非ユークリッド幾何学は当たり前で、現代数学の基礎に至る所に現われ、ユークリッド幾何学などは 当たり前で、数学の実体としては 非ユークリッド幾何学が主流になっていることは 現在では相当に常識である。 ― ゼロ除算もそうなるだろう。
数学を支える解析関数の理論の基礎は、楕円型非ユークリッド幾何学で、xy平面上に置かれた球面への立体射影で、平面は球面上に1対1に写され、平面上の異なる平行線は無限遠点と呼ばれる球面上の北極点に対応する 想像上の点で交わると考えられる。平行線は無限の彼方で交わっていると発想する。立体射影の解説を参照して頂きたい。北極点と無限遠点の対応である。すると平行線は無限遠点で交わるとなって、ユークリッドの公理は成り立たない。 無限遠点を加えた拡張平面と球面は全体が1対1に全体として対応するから、極めて美しい対応関係である。立体射影は直線を円の1種と見なせば円は円に対応し、写像は交わる角を不変にするなど美しい性質を持つ。直線は半径無限大の円と考える発想も自然に受け止められるだろう。 円や直線を表現する方程式もそう述べているように見える。始めて無限遠点と立体射影の性質を学んだとき、人は感銘し、喜びに感動したのではないだろうか。無限に広がる空間が、ボール一個で表現されたからである。直線を一方向に行けば、丁度円を1方向に行けば円をくるくる回るように、無限点を通って反対方向から戻って来る ー 永劫回帰の思想を実現させている。それゆえにこの考え方は100年以上も揺るぐことはなく、すべての教科書、学術書がそのように述べている超古典的な考えであると言える。 ― 実は、それらは、相当に違っていた。
ところが 2014年2月2日発見したゼロ除算1/0=0の結果は、基本的な関数W=1/z の原点における値をゼロとすべきことを示している。これは驚嘆すべきことで、無限大や無限遠点を考えていた世界観に対して、強力な不連続性を持って、無限遠点が突然にゼロに飛んでいると解釈せざるを得ない。原点に近づけばどんどん像は無限の彼方に飛んでいく様が 確かに見えるが、その先が突然ゼロであるというのであるから、人は顔をしかめ、それは何だと発想したのは当然である。アリストテレスの連続性の世界観に反するので、その真偽を問わず、そのような考え、数学は受け入れられないと多くの数学者が断言し、それらは思い付きではなく、2年、3年と拒否の姿勢は続いたものである。そこで、初等数学の具体例で検証することとして、現在800件を超える、ゼロ除算有効の例を探した。それで、ゼロ除算は 我々の世界と数学の実体であると公言して論文や数学会、国際会議などでも発表して来ている。
その様な折り、全く意外なところから、意外な人から、2018.6.4.7:22 ロシアのV. Puha氏から Horn Torus のモデルが提起されてきた:数学会でも 無限遠点はゼロで表されること、円の中心の鏡像は無限遠点ではなく、中心自身であること。ローラン展開は特異点で有限確定値をとり、典型的な例は\tan(\pi/2) =0で大きな影響を解析学と幾何学に与えると述べて 論文などにも発表して来ました。それでリーマン球のモデルを想像すると強力な不連続性を認めることになります。4年間そうだと考えてきましたが 最近ロシアの若い研究者 Vyacheslav がゼロ除算のモデルとして 美しい
Horn Torus & Physics
https://www.horntorus.com/
geometry of everything, intellectual game to reveal engrams of dimensional thinking and proposal for a different approach to physical questions.
を提案してきました。(0,0,1/2)に中心を持つ半径1/2の球面への立体射影からさらにその中心から、その中心と元の球面に内接するトーラスへの写像を考えると無限遠点を含む平面は ちょうどHorn Torusに1対1上へに写るというのです。これが拡張平面のモデルだというのですから、驚嘆すべきことではないでしょうか。ゼロと無限遠点は(0,0,1/2)に一致しています。ゼロ除算は初等数学全般の修正を求めていると言っていますので、多くの皆様の教育と研究に関わるものと思い、メーリングリストを用いてニュース性をもって、お知らせしています。何でも助言やご意見を頂ければ幸いです。どうぞ 宜しくお願いします(2018.6.8.14:40)(関数論分科会に対して)。
その後、この対応におけるHorn Torusには 美しい性質がいろいろ存在することが分かって来た。例えば、2018.7.7.8:30 構想が 電光のように閃いた:円内と円外は 関数論、解析的には 完全に同等である。この完全性を表現するには リーマン球面は不完全で、ホーン・トーラスの方が良いと考えられる。リーマン球面は 立体射影の考えで、 ユークリッド幾何学を表現するものとして美しいが 実は代数学や幾何学と上手く合っておらず、無限の彼方で不完全であったと言える。進化した解析学や代数学は ユークリッド幾何学を越えて、ホーン・トーラスを ゼロ除算による完全化とともに 数学の実体として表していると言える。
数学的にさらに詳しく述べるのは適当でないと考える。 ところが既に上記サイトで紹介したようにHorn Torus に ゼロ除算とは無関係に、特別の情念を20年以上も抱いてきていて (Now another point: You repeatedly asked, how I got the idea with the horn torus. So I will answer: In my German texts from 1996/98 that is described rather extensively as a background story, but in the English excerpts from 2006 and later I only address the results.)、上記サイトでいろいろ述べられているように 世界の記述にはHorn Torusが 良いと述べている。元お医者さんで 現在は退職 楽しい人生を送っているという70歳になるWolfgang Däumler という人で 既にメールで交信しているが、極めて魅力的な人物で、ヨット遊びや小型飛行機で友人に会いに行く途中だとか面白い話題を寄せている。 何故そのようなモデルを発想されたのが 繰り返し問うているが、納得できる説明は未だ寄せられていない。 注目しているのは 全くゼロ除算の認識の無い方が ゼロ除算を実現させるモデルを長年抱いてきたという 事実である。 - そこで、ゼロ除算の真実を知って、どのような世界観を抱くかを注目している。
以 上
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上
再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
数学基礎学力研究会 サイト:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.8.8:40 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は ゼロ除算の研究の重要性とその研究を進めるための各種協力の要請である。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
以 上
人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上
再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
数学基礎学力研究会 サイト:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
しかるに 2018.8.8.8:40 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は ゼロ除算の研究の重要性とその研究を進めるための各種協力の要請である。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
以 上
0 件のコメント:
コメントを投稿