毎日小学生新聞
ブラックホールからアインシュタイン、暗黒星雲から原始太陽系まで、科学の最先端を紹介しつつも、すっごくおもしろい冒険物語を聞いているみたいです。
ご存じのとおり、的川博士は長い間、日本の宇宙開発のリーダーをつとめ、現在は宇宙航空研究開発機構(JAXA)の名誉教授です。でも、小学生のころには野球と釣りに夢中で、宇宙には関心がなかったそうです。ただ夜釣りで魚がかかるのを待つ間、することがないので星を眺めていました。やがて星座があると知り、星座のもとになったギリシャ神話の本も懐中電灯で舟の上で読んだそうです。
「今、火星が地球に大接近しているね。8月いっぱいぐらいまで、土星、木星、金星も同じ夜空で見ることができます。これは100年に1度ぐらいのとても珍しいこと。ぜひ自分の目で見てごらん」と話していました。
火星といえば、編集長が今気になっているのは、アメリカの火星探査車「オポチュニティー」です。オポチュニティー(「機会」という意味です)は2004年に火星に到着して、ずっとデータを送り続けてきました。でも火星の大砂嵐のため6月10日を最後に通信ができなくなっているのです。太陽電池で動くので砂嵐で発電ができず、止まっていると見られています。
アメリカの新聞によると、研究者たちはオポチュニティーを起こすため、元気が出る「目覚まし用音楽」のリストを作り、毎日送信しているそうです。おもしろいですね。
講演会では「宇宙飛行士になるには何が必要ですか」という質問に的川博士がこう答えていました。「がまんしないといけない時はがまんできて、みんなと協調しないといけない時は協調できること。それから元気なこと。そのためにも子どものころにいっぱい遊んでいること。勉強ばっかりはダメだね」
宇宙飛行士も宇宙船や探査車をつくる技術者も、何かがうまくいかないとき、あきらめないで挑戦し続けないといけません。そのためには体力と遊び心がいるのでしょう。
ということで、ちょっと遊びましょうか。http://mainichi.jp/articles/20180825/kei/00s/00s/002000c
ゼロ除算算法を使うとどうでしょうか???
有限の値が出るのですがいかがでしょうか・・・
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・・・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明 375 (2017.7.21):ブラックホール、ゼロ除算、宇宙論
本年はブラックホール命名50周年とされていたが、最近、wikipedia で下記のように修正されていた:
名称[編集]
"black hole"という呼び名が定着するまでは、崩壊した星を意味する"collapsar"[1](コラプサー)などと呼ばれていた。光すら脱け出せない縮退星に対して "black hole" という言葉が用いられた最も古い印刷物は、ジャーナリストのアン・ユーイング (Ann Ewing) が1964年1月18日の Science News-Letter の "'Black holes' in space" と題するアメリカ科学振興協会の会合を紹介する記事の中で用いたものである[2][3][4]。一般には、アメリカの物理学者ジョン・ホイーラーが1967年に "black hole" という名称を初めて用いたとされるが[5]、実際にはその年にニューヨークで行われた会議中で聴衆の一人が洩らした言葉をホイーラーが採用して広めたものであり[3]、またホイーラー自身は "black hole" という言葉の考案者であると主張したことはない[3]。https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%83%E3%82%AF%E3%83%9B%E3%83%BC%E3%83%AB
世界は広いから、情報が混乱することは よく起きる状況がある。ブラックホールの概念と密接な関係のあるゼロ除算の発見(2014.2.2)については、歴史的な混乱が生じないようにと 詳しい経緯、解説、論文、公表過程など記録するように配慮してきた。
ゼロ除算は簡単で自明であると初期から述べてきたが、問題はそこから生じるゼロ除算算法とその応用であると述べている。しかし、その第1歩で議論は様々でゼロ除算自身についていろいろな説が存在して、ゼロ除算は現在も全体的に混乱していると言える。インターネットなどで参照出来る膨大な情報は、我々の観点では不適当なものばかりであると言える。もちろん学術界ではゼロ除算発見後3年を経過しているものの、古い固定観念に囚われていて、新しい発見は未だ認知されているとは言えない。最近国際会議でも現代数学を破壊するので、認められない等の意見が表明された(再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告)。そこで、初等数学から、500件を超えるゼロ除算の証拠、効用の事実を示して、ゼロ除算は確定していること、ゼロ除算算法の重要性を主張し、基本的な世界を示している。
ゼロ除算について、膨大な歴史、文献は、ゼロ除算が神秘的なこととして、扱われ、それはアインシュタインの言葉に象徴される:
Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (Gamow, G., My World Line (Viking, New York). p 44, 1970).
ところが結果は、実に簡明であった:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world
しかしながら、ゼロ及びゼロ除算は、結果自体は 驚く程単純であったが、神秘的な新たな世界を覗かせ、ゼロ及びゼロ除算は一層神秘的な対象であることが顕になってきた。ゼロのいろいろな意味も分かってきた。 無限遠点における強力な飛び、ワープ現象とゼロと無限の不思議な関係である。アリストテレス、ユークリッド以来の 空間の認識を変える事件をもたらしている。 ゼロ除算の結果は、数理論ばかりではなく、世界観の変更を要求している。 端的に表現してみよう。 これは宇宙の生成、消滅の様、人生の様をも表しているようである。 点が球としてどんどん大きくなり、球面は限りなく大きくなって行く。 どこまで大きくなっていくかは、 分からない。しかしながら、ゼロ除算はあるところで突然半径はゼロになり、最初の点に帰するというのである。 ゼロから始まってゼロに帰する。 ―― それは人生の様のようではないだろうか。物心なしに始まった人生、経験や知識はどんどん広がって行くが、突然、死によって元に戻る。 人生とはそのようなものではないだろうか。 はじめも終わりも、 途中も分からない。 多くの世の現象はそのようで、 何かが始まり、 どんどん進み、そして、戻る。 例えばソロバンでは、願いましては で計算を始め、最後はご破産で願いましては、で終了する。 我々の宇宙も淀みに浮かぶ泡沫のようなもので、できては壊れ、できては壊れる現象を繰り返しているのではないだろうか。泡沫の上の小さな存在の人間は結局、何も分からず、われ思うゆえにわれあり と自己の存在を確かめる程の能力しか無い存在であると言える。 始めと終わり、過程も ようとして分からない。
ブラックホールとゼロ除算、ゼロ除算の発見とその後の数学の発展を眺めていて、そのような宇宙観、人生観がひとりでに湧いてきて、奇妙に納得のいく気持ちになっている。
以 上
再生核研究所声明 385(2017.10.11): 地の果て、無限の彼方、平面の究極の果てを観るー 永遠とは何か、無限の先の不思議さ
平面上をどこまでも どこまでもある直線上を一方方向に行ったらどうなるだろうか。永遠とはどのようなものだろうか? そのようなことを多くの人は自然に思う、考えるのではないだろうか。これについて どこまでも どこまでも行っても行き着くことはなく、どこまでも どこまでも行くと考えるのが、 ユークリッド幾何学に現れる空間の捉え方であった。― これは砂漠の文化を反映していると哲学の先生に聞いたことがある。果てしない空間と歩みからである。
これに対して、立体射影で平面を球面上に写せば、どのような方向に行っても球面上の北極に対応する点として無限遠点が考えられ、全平面は 球面上の北極点を除いた点に1対1に対応して、無限遠点を球面上の北極に対応させれば、全球面と拡張された平面は 全体が1対1に対応して、ある意味で平面は完全化される。 ― これはアレクサンドルフの1点コンパクト化と呼ばれている。平面上の直線も円も立体射影で球面上では円に写り、平面上の直線と円は、立体射影で球面上では、北極を通る円に対応するか、北極を通らない円に写るかの違いに過ぎないとなる。すると直線と円は全体として1対1に対応して、円を1方向に行けばぐるぐる回るように、平面上をどこまでも どこまでも直線上を一方方向に行ったら 無限遠点を経由して反対方向から戻ってくることになる。- (この詳しい説明はサイトで簡単に説明されているので知識の無い方は参照して下さい。 以下に出てくる、円の鏡像やローラン展開もそうです。) これは永劫回帰、輪廻思想を表現するものとして 実に美しく楽しい。- この思想は四季を有するアジア文化の世界観を表しているという。
上記2つの考えは、基本的な世界観で ユークリッド幾何学と非ユークリッド幾何学(楕円型)で、後者も確立して百年以上複素解析学を支える空間として定説になってきた。
ところがゼロ除算が齎した空間は これらとは全く異なる空間で、しかも、新しく発見された空間が 我々の初等数学全般を支える空間であることが 沢山の具体例で明らかにされてきた。
上記立体射影をもう1度振り帰えろう。その立体射影で、直線上を一方向にどんどん行けば、限りなく 球面上では 無限遠点に近づいていることが確認できる。そこで、その先、近づいた先を無限遠点として無限の記号で表してきた。どんどん球面上では北極に近づく、極限点は北極であると言える。しかしながら、ここで驚嘆すべきことがあった。近づいた先が無限遠点は良いが、実は究極の先で不連続性があって、突然、そこで 原点になっているというのが ゼロ除算の結果である。すなわち、W= 1/z に対して、 原点の値がゼロである。簡単な関数 y=1/x で原点の値はゼロである。ゼロの近くでプラス、マイナス無限に幾らでも近づくが、原点で不連続にゼロの値をとっている。繰り返し述べてきたようにこれが、アリストテレスの世界観に反し、ゼロ除算の理解を遅らせる、ゼロ除算が嫌われている一つの要素である。- 驚嘆すべき現象と言える。
どこまでも どこまでも直線上を一方方向に行ったら、限りなく無限遠点に近づく、しかしながらその先は、突然、原点に飛んでいる。動きの全体を簡単な関数y=1/xのグラフで理解して欲しい。
無限の先の不思議さに触れて行きたい。A を中心とするある円の、中心 A の鏡像は 世の常識と違って、実は中心 Aであることが証明された。中心Aの近くの点は無限遠点の近くに写るから、鏡像変換で中心 Aだけが 飛んで変に写っていることになる。この対応は円の半径には寄らない性質であることを確認したい。すると円外の無限遠点の近くが、中心 Aによることになり、無限遠点が一つだろうかという疑念が湧いてくるのではないだろうか。中心 Aごとに無限遠点が対応しているのではないだろうかとの思いがするだろう。- アレクサンドロフの1点コンパクト化とは、あらゆるコンパクト集合の外にある点を想像上で考えて1点コンパクト化と定義していて、1点は定義である。しかるに、立体射影では 原点の上に存在する北極点に対応する想像上の平面上の点として無限遠点が 定義されている。いずれも1点は定義で、イチ1についての意味は与えられていない。- さらに 立体射影が 平面の座標軸の取り方によっているのは歴然である。
さて、我々はゼロ除算算法を導入した。すなわち、 関数f(z)のa 点の周りでのローラン展開において 値f(a)を その展開における 定数項C_0で定義する。負べき項が存在するとき、z が aに近づくとき、f(z)は無限に、極に、無限遠点に近づくが、z が a自身ときは 値C_0をとる。この値は関数fによって 強力な不連続性で決まる。- これは無限の先に存在するという意味で、関数による無限遠点ともいえる。この値には不思議な性質があることを紹介しておこう:
次は 角の3等分を考えて生まれたNicomedes (BC 280—BC 210)の曲線である。
r = a + b/(cos theta);
a,b> 0 定数、x 軸を原線とする極座標。直線 x = bを考えるとこの関数のグラフは興味深い幾何学的な意味を有することが分かる(考えて欲しい)。もちろん、グラフはx 軸に対称で直線 x = bを漸近線にしている。aがゼロのとき、グラフは直線x = b である。しかしながらゼロ除算算法で、theta が 直角のとき、x,y直交座標系で、点(0,a)を表すことになり、この点の意味付けは 難しく神秘的とも言える。直線 x = bを漸近線にしているのに、奇妙な点(0,a)が曲線(関数)の無限遠点になっている。
次は Diocles (BC 249?-BC180?) の疾走線と呼ばれる面白い曲線であるが表現は複雑なので、適当な座標系で (2a –x)y^2 = x^3, r = 2a(1/ (cos theta) - cos theta) などと表されると述べるが、特異点ではいずれも美しい、関数のグラフの頂点が 無限遠点になる。この発現は実に面白い。― それにしてもギリシャ文化の素晴らしさに感銘を受けてしまう。
今回の話題はホットでいわば最前線の研究課題とも言えるので自由に考え、かつ新しい世界を探検して欲しい。元前橋工科大学教授 奥村博氏(Ph D.)の楽しい数学は大いに楽しめるのではないでしょうか。円と直線に関するユークリッド幾何学(和算)に ゼロ除算は新しい世界を拓いている。沢山ゼロ除算の結果が幾何学的に現れていて実に楽しい。それらは、 ユークリッド以来の新しい世界である。
以 上
平面上をどこまでも どこまでもある直線上を一方方向に行ったらどうなるだろうか。永遠とはどのようなものだろうか? そのようなことを多くの人は自然に思う、考えるのではないだろうか。これについて どこまでも どこまでも行っても行き着くことはなく、どこまでも どこまでも行くと考えるのが、 ユークリッド幾何学に現れる空間の捉え方であった。― これは砂漠の文化を反映していると哲学の先生に聞いたことがある。果てしない空間と歩みからである。
これに対して、立体射影で平面を球面上に写せば、どのような方向に行っても球面上の北極に対応する点として無限遠点が考えられ、全平面は 球面上の北極点を除いた点に1対1に対応して、無限遠点を球面上の北極に対応させれば、全球面と拡張された平面は 全体が1対1に対応して、ある意味で平面は完全化される。 ― これはアレクサンドルフの1点コンパクト化と呼ばれている。平面上の直線も円も立体射影で球面上では円に写り、平面上の直線と円は、立体射影で球面上では、北極を通る円に対応するか、北極を通らない円に写るかの違いに過ぎないとなる。すると直線と円は全体として1対1に対応して、円を1方向に行けばぐるぐる回るように、平面上をどこまでも どこまでも直線上を一方方向に行ったら 無限遠点を経由して反対方向から戻ってくることになる。- (この詳しい説明はサイトで簡単に説明されているので知識の無い方は参照して下さい。 以下に出てくる、円の鏡像やローラン展開もそうです。) これは永劫回帰、輪廻思想を表現するものとして 実に美しく楽しい。- この思想は四季を有するアジア文化の世界観を表しているという。
上記2つの考えは、基本的な世界観で ユークリッド幾何学と非ユークリッド幾何学(楕円型)で、後者も確立して百年以上複素解析学を支える空間として定説になってきた。
ところがゼロ除算が齎した空間は これらとは全く異なる空間で、しかも、新しく発見された空間が 我々の初等数学全般を支える空間であることが 沢山の具体例で明らかにされてきた。
上記立体射影をもう1度振り帰えろう。その立体射影で、直線上を一方向にどんどん行けば、限りなく 球面上では 無限遠点に近づいていることが確認できる。そこで、その先、近づいた先を無限遠点として無限の記号で表してきた。どんどん球面上では北極に近づく、極限点は北極であると言える。しかしながら、ここで驚嘆すべきことがあった。近づいた先が無限遠点は良いが、実は究極の先で不連続性があって、突然、そこで 原点になっているというのが ゼロ除算の結果である。すなわち、W= 1/z に対して、 原点の値がゼロである。簡単な関数 y=1/x で原点の値はゼロである。ゼロの近くでプラス、マイナス無限に幾らでも近づくが、原点で不連続にゼロの値をとっている。繰り返し述べてきたようにこれが、アリストテレスの世界観に反し、ゼロ除算の理解を遅らせる、ゼロ除算が嫌われている一つの要素である。- 驚嘆すべき現象と言える。
どこまでも どこまでも直線上を一方方向に行ったら、限りなく無限遠点に近づく、しかしながらその先は、突然、原点に飛んでいる。動きの全体を簡単な関数y=1/xのグラフで理解して欲しい。
無限の先の不思議さに触れて行きたい。A を中心とするある円の、中心 A の鏡像は 世の常識と違って、実は中心 Aであることが証明された。中心Aの近くの点は無限遠点の近くに写るから、鏡像変換で中心 Aだけが 飛んで変に写っていることになる。この対応は円の半径には寄らない性質であることを確認したい。すると円外の無限遠点の近くが、中心 Aによることになり、無限遠点が一つだろうかという疑念が湧いてくるのではないだろうか。中心 Aごとに無限遠点が対応しているのではないだろうかとの思いがするだろう。- アレクサンドロフの1点コンパクト化とは、あらゆるコンパクト集合の外にある点を想像上で考えて1点コンパクト化と定義していて、1点は定義である。しかるに、立体射影では 原点の上に存在する北極点に対応する想像上の平面上の点として無限遠点が 定義されている。いずれも1点は定義で、イチ1についての意味は与えられていない。- さらに 立体射影が 平面の座標軸の取り方によっているのは歴然である。
さて、我々はゼロ除算算法を導入した。すなわち、 関数f(z)のa 点の周りでのローラン展開において 値f(a)を その展開における 定数項C_0で定義する。負べき項が存在するとき、z が aに近づくとき、f(z)は無限に、極に、無限遠点に近づくが、z が a自身ときは 値C_0をとる。この値は関数fによって 強力な不連続性で決まる。- これは無限の先に存在するという意味で、関数による無限遠点ともいえる。この値には不思議な性質があることを紹介しておこう:
次は 角の3等分を考えて生まれたNicomedes (BC 280—BC 210)の曲線である。
r = a + b/(cos theta);
a,b> 0 定数、x 軸を原線とする極座標。直線 x = bを考えるとこの関数のグラフは興味深い幾何学的な意味を有することが分かる(考えて欲しい)。もちろん、グラフはx 軸に対称で直線 x = bを漸近線にしている。aがゼロのとき、グラフは直線x = b である。しかしながらゼロ除算算法で、theta が 直角のとき、x,y直交座標系で、点(0,a)を表すことになり、この点の意味付けは 難しく神秘的とも言える。直線 x = bを漸近線にしているのに、奇妙な点(0,a)が曲線(関数)の無限遠点になっている。
次は Diocles (BC 249?-BC180?) の疾走線と呼ばれる面白い曲線であるが表現は複雑なので、適当な座標系で (2a –x)y^2 = x^3, r = 2a(1/ (cos theta) - cos theta) などと表されると述べるが、特異点ではいずれも美しい、関数のグラフの頂点が 無限遠点になる。この発現は実に面白い。― それにしてもギリシャ文化の素晴らしさに感銘を受けてしまう。
今回の話題はホットでいわば最前線の研究課題とも言えるので自由に考え、かつ新しい世界を探検して欲しい。元前橋工科大学教授 奥村博氏(Ph D.)の楽しい数学は大いに楽しめるのではないでしょうか。円と直線に関するユークリッド幾何学(和算)に ゼロ除算は新しい世界を拓いている。沢山ゼロ除算の結果が幾何学的に現れていて実に楽しい。それらは、 ユークリッド以来の新しい世界である。
以 上
再生核研究所声明 392(2017.11.2): 数学者の世界外からみた数学 ― 数学界の在り様について
平和が永く続くと歌謡界、スポーツ界、芸能界など、重層に深く発展して、いわゆる一般の人たちには近づけない形相を帯びてくる。NHK大河ドラマや朝ドラなどの映像など 高級でどうして作れたか不思議でならない。しかし、ここに挙げた分野などでは、それらの良さが一般の人たちにも理解され 楽しませてくれるので、社会貢献、社会の役割などは相当理解できる。
このような視点から、数学について考えてみたい。人類精神の名誉のため の研究ではなく、専門外の人にとっての数学である。
まず、数学の役割であるが、それはギリシャ時代以来、数学の学習を通しての論理的な思考の訓練と、科学を記述する言語としての数学教育が重要視され、実際、各種入試などでは 数学の学力は重視されてきている。- これらの要請は、計算機や人工知能が 発達しても当分 本質は変わらないと言えるだろう。しかし、これらの状況に従って、カリキュラムの在り様や、教育の精神は絶えず変更が必要であろう。
上記に述べられている内容については、素材は相当に固まっていて、教育内容は安定していると見られるのではないだろうか。
そこで、日進月歩の数学研究内容の高度化と深さは、他の分野に比べて、数学の抽象性もあって、理解が困難で、専門家の間でさえ交流できない状況は普遍的見られる。一般人にとっては、大抵は始めから話題にもできず、内容の理解の最初の1歩さえ、踏み込めないであろう。すなわち多くの研究成果は、社会的にも一般の人にも何にもならない内容であると考えられる。しかし、物理的な問題、医学的な問題など具体的な問題解決の観点から等 具体的な研究の位置づけのある研究は 何も一般人に理解できなくても 当然そのような研究は十分に意義があることは誰にでも分かるだろう。しかしながら、数学内部から湧いた純粋な数学の内容は高級で、抽象的で、理解もできず、興味、関心を呼び起こすことは相当に難しいのではないだろうか。そのような課題は、数学界以外では ほとんど意味がないと言われかねない。これが現代数学における純粋数学の姿ではないだろうか。
もちろん、人類の名誉のための 自由な研究は それ自体 誠に 尊いものである。しかしながら、数学界が社会でより安定的な存在になるためには、高等数学より、基礎的な数学を重視し、数学の興味や好奇心を駆り立てる教育的な視点を強めていくのが 良いのではないだろうか。教育より研究であるという発想は、高等研究機関や大学などでは当然、としても 広範な大学や学校では勧められない発想ではないだろうか。 評価、評価の世相が 研究や形式的な研究業績などに拘りすぎている世相が無いかと気になる。数学の教育や数学の社会的な存在性に配慮していきたい。― 何のための数学かとは 絶えず問うていきたい。
数学の研究ではなく、数学を楽しんでいるような先生は、教授は世に必要であり、良い先生であり、良い教育者ではないだろうか。世情、研究者自身本意ではない つまらない抽象的な研究に走り過ぎてはいないであろうか。楽しむような数学を世に広めたい。― もちろん、これは一面の観点である。
以 上
再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算
ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs
NHKスペシャル 神の数式番組を繰り返し拝見して感銘を受けている。素晴らしい映像ばかりではなく、内容の的確さ、正確さに、ただただ驚嘆している。素晴らしい。
ある物理学の本質的な流れを理解し易く表現していて、物理学の着実な発展が良く分かる。
原爆を作ったり、素粒子を追求していたり、宇宙の生成を研究したり、物理学者はまるで、現代の神官のように感じられる。素粒子の世界と宇宙を記述するアインシュタインの方程式を融合させるなど、正に神の数式と呼ぶにふさわしいものと考えられる。流れを拝見すると物理学は適切な方向で着実に進化していると感じられる。神の数式に近づいているのに 野蛮なことを繰り返している国際政治社会には残念な気持ちが湧いて来る。ロシアの天才物理学者の終末などあまりにも酷いのではないだろうか。世界史の進化を願わざるを得ない。
アインシュタインの相対性理論は世界観の変更をもたらしたが、それに比べられるオイラーの公式は数学全般に大きな変革をもたらした:
With this estimation, we stated that the Euler formula
$$
e^{\pi i} = -1
$$
is the best result in mathematics in details in: No.81, May 2012 (pdf 432kb)
余りにも神秘的な数式のために、アインシュタインの公式 E= mc^2 と並べて考えられる 神の意志 が感じられるだろう。 ところで、素粒子を記述する方程式とアインシュタインの方程式を融合したら、 至る所に1/0 が現れて 至る所無限大が現れて計算できないと繰り返して述べられている。しかしながら、数学は既に進化して、1/0=0 で無限大は 実はゼロだった。 驚嘆すべき世界が現れた。しかしながら、数学でも依然として、rがゼロに近づくと 無限大に発散する事実が有るので、弦の理論は否定できず、問題が存在する。さらに、形式的に発散している場合でも、ゼロ除算算法で、有限値を与え、特異点でも微分方程式を満たすという新しい概念が現れ、局面が拓かれたので、数学者ばかりではなく、物理学者の注意を喚起して置きたい。
物理学者は、素粒子の世界と巨大宇宙空間の方程式を融合させて神の方程式を目指して研究を進めている。数学者はユークリッド以来現れたゼロ除算1/0と空間の新しい構造の中から、神の意志を追求して 新しい世界の究明に乗り出して欲しいと願っている。いみじくもゼロ除算は、ゼロと無限大の関係を述べていて、素粒子と宇宙論の類似を思わせる。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば 神の意志 を知りたいということである。 そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。 ゼロ除算の研究状況は、
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/ に 関連情報がある。
以 上
ゼロ除算の論文が2編、出版になりました:
ICDDEA: International Conference on Differential & Difference Equations and Applications
Differential and Difference Equations with Applications
ICDDEA, Amadora, Portugal, June 2017
• Editors
• (view affiliations)
• Sandra Pinelas
• Tomás Caraballo
• Peter Kloeden
• John R. Graef
Conference proceedingsICDDEA 2017
log0=log∞=0log0=log∞=0 and Applications
Hiroshi Michiwaki, Tsutomu Matuura, Saburou Saitoh
Pages 293-305
Division by Zero Calculus and Differential Equations
Sandra Pinelas, Saburou Saitoh
Pages 399-418
ICDDEA: International Conference on Differential & Difference Equations and Applications
Differential and Difference Equations with Applications
ICDDEA, Amadora, Portugal, June 2017
• Editors
• (view affiliations)
• Sandra Pinelas
• Tomás Caraballo
• Peter Kloeden
• John R. Graef
Conference proceedingsICDDEA 2017
log0=log∞=0log0=log∞=0 and Applications
Hiroshi Michiwaki, Tsutomu Matuura, Saburou Saitoh
Pages 293-305
Division by Zero Calculus and Differential Equations
Sandra Pinelas, Saburou Saitoh
Pages 399-418
とても興味深くみました: ゼロ除算(division by zero)1/0=0、0/0=0、z/0=0 2018年05月28日(月) テーマ:数学 これは最も簡単な 典型的なゼロ除算の結果と言えます。 ユークリッド以来の驚嘆する、誰にも分る結果では ないでしょうか? Hiroshi O. Is It Really Impossible To Divide By Zero?. Biostat Biometrics Open Acc J. 2018; 7(1): 555703. DOI: 10.19080/BBOJ.2018.07.555703 ゼロで分裂するのは本当に不可能ですか? - Juniper Publishers ↓↓↓ https://juniperpublishers.com/bboaj/pdf/BBOAJ.MS.ID.555703.pdf ゼロ除算の発見と重要性を指摘した:日本、再生核研究所 2014年2月2日
人類の思索の歴史。それは、全宇宙の謎を解く唯一無二の“神の数式”を追い求めた歴史でもあった。ニュートン、アインシュタイン以来、科学者たちは「あらゆる自然現象は、最終的には一つの数式で説明できるはずだ」と信じてきたのだ。今、ヒッグス粒子の発見によって、人類は“神の数式”の輪郭をつかもうとしている。最速のコンピューターさえも届かない人類の知のフロンティアを大胆に映像化。天才たちの苦闘を描く。https://www2.nhk.or.jp/archives/tv60bin/detail/index.cgi?das_id=D0009050226_00000
再生核研究所声明 450(2018.8.22): 水前寺清子様に呼応して - 雄たけび
雄たけびとして、谷亮子柔道選手の金メダル獲得の際の満面喜びのシーン、北島康介水泳選手の金メダル獲得の際の発言、超気持良いなどの叫びが思い出される。下記の歓喜、凄い感銘をうけて、呼応する形で 湧いてきた情念を思いのままに表現したくなった。
(水前寺清子様、坂本冬美様、それに 皆さん、歌 素晴らしかった。 伊東さんの紹介も 味わいが有りますね。素晴らしい日本の歌:NHK 新BS 日本の歌、 素晴らしい。日本の歌謡界のレベルは 高いですね。 ― 雄たけび: 雄叫び ・ 叫び ・ 怒号 ・雄 嘶き ・ 絶叫 ・ 雄たけび ・ ときの声 ・ 鬨の声 ・ 勝ちどき ・ 歓声 ・ 喚声 ・ 叫び声)。
清子様の歌詞に 男は、泣いてはいけない、ほれなきゃいけない、天下を取れ と凄い言葉がある、まさか数学で天下を狙うことは 想像もできない程に凄い天才や秀才たちの集まりの世界、能力も足りなく小さな存在である立場では思いもよらないことと発想するだろう。ところが世には 偶然やまぐれ当たりがあるから、面白い。それは、一般の方からの質問 100/0 の意味を問われて 真面目に深く考えて、偶然に発見したものである。いわゆるゼロ除算、ゼロで割ることを考える、古い歴史をもつ神秘的な問題に対する あまりにも簡単な発見である。それが、アリストテレス、ユークリッド以来の空間の発見に繋がり、初等数学全般の修正を求めているから、 天下取りより はるかに愉快な事件ではないだろうか。 世界の初等数学全般を変更して、20億人以上が理解して 新しい数学、世界の出現に驚嘆するだろう。内容は簡単に 真直ぐに立った電柱の勾配は、y軸の勾配はゼロであると述べられる。 数式で表現すれば、
1/0=0/0=z/0= \tan(\pi/2)=0
と簡潔に述べられる。簡単な関数y=1/xの原点x=0における値はゼロである。これはゼロと無限大の微妙な関係を捉えている。それは人生とは何かという問いに対して 新しい世界観を示している。またゼロ除算の歴史は 人間とはどのようなもので、人間が如何に独断と偏見に満ちた存在で、人間の愚かさを良く示している。数学的な内容について、次を追記して置こう:
再生核研究所声明 442(2018.8.10): ゼロ除算研究の大義と研究協力へのお願い
一般向きにゼロ除算の解説を 4年間を越えて続けている:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。
○ 堪らなく楽しい数学-ゼロで割ることを考える。
ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。
最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。
割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。
そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。
この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。
次も参照:
再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
再生核研究所声明 437 (2018.7.30) : ゼロ除算とは何か - 全く新しい数学、新世界である
再生核研究所声明 438(2018.8.6): ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について
以 上
0 件のコメント:
コメントを投稿