2018年8月16日木曜日

国王、女皇与数学大咖 | 蔡天新专栏 我是科学家2018-08-16 11:29:21阅读(0)评论(0)

国王、女皇与数学大咖 | 蔡天新专栏

  作者:蔡天新,浙江大学数学学院教授
  编辑:婉珺
  
  一般来说,数学家不太过问政治, 他们不像艺术家那样惹是生非, 这一点晚年的波德莱尔似有所悟。这位法国诗人被后世尊为“现代主义文学之父”,却终其一生过着波西米亚式的放浪生活, 他的晚年颇为凄凉。波德莱尔曾引用17世纪同胞数学家帕斯卡尔的话:“几乎所有灾难的发生都是由于我们没有老老实实地待在自己的屋子里。”
法国诗人波德莱尔。图片来源:wikipedia
  也正因为如此,许多政治人物愿意与数学家交往,有的甚至沉湎于数学问题。
  欧几里得与阿基米德欧几里得是古希腊几何学的集大成者, 他的出生地和确切的生活年代至今仍是个谜。我们只知道他曾在雅典的柏拉图学园求学, 后来被埃及国王托勒玫一世延聘到亚历山大, 主持亚历山大大学数学系, 那里有一座藏书量惊人的图书馆, 欧氏因此得以完成《几何原本》,这是数学史上最著名的一部著作。
  位于牛津大学自然历史博物馆的欧几里得石像。图片来源:wikipedia
  这部著作是现代科学产生的一个主要因素,作为演绎推理结构方面的杰出典范, 它甚至给哲学家们带来启示。
  至于欧几里得的个人气质,则在两个传说故事里得以体现。当有位学生问起学习几何学能得到什么回报时,欧几里得便命令奴仆给他一个便士, 并对身边的人说: “因为他总要从学习中得到好处。”而当国王向欧几里得询问学习几何学的捷径时, 他的回答同样十分客观: “在几何学中没有王者之路”。这位国王是马其顿人,是亚历山大大帝的将军,在后者去世后主政埃及,成为拥有15代国王的托勒玫王朝的开国皇帝,而王朝的末代皇帝恰好是那位埃及艳后克娄巴特拉与罗马独裁者尤里乌斯·恺撒的儿子。值得一提的是,这个皇帝家族与2世纪建立“地心说”的希腊天文学家、地理学家和数学家托勒玫并无亲戚关系。
  在欧几里得去世前几年出生的阿基米德是古代世界最伟大的数学家和科学家, 他被后人誉为“数学之神”。
沉思的阿基米德。图片来源:wikipedia
  阿基米德少年时曾到亚历山大念书, 结交了数位志同道合的朋友(其中有欧几里得的弟子)。返回故乡叙拉古(今意大利西西里岛)以后, 他很受国王希罗二世的器重, 有一个流传广泛的故事, 希罗王请人制造了一顶金王冠, 他怕这个王冠里掺了白银, 便求教于阿基米德。
  这则故事记载在公元前1世纪罗马建筑师维特鲁威的著作《建筑学》中。有一天,阿基米德在木桶里沐浴时注意到, 一个人所排出的水在容积上和自己的身体相等, 他立刻联想到, 相同重量的物体比重小的排出的水较比重大的多, 由此他发明了著名的浮体定律, 并解决了希罗王提出的问题。阿基米德因此得到国王的尊重,最后他为国捐躯。
阿基米德浮力原理。图片来源:youtube
  1世纪的克劳迪乌斯是第一个出生在意大利以外的古罗马皇帝,且有明显的身体残疾(可能从小患有小儿麻痹症),历史学家塔西陀甚至嘲笑他的性格“懦弱”。但他在位时政绩显赫,率先把罗马的统治扩大到了北非,并御驾亲征渡过英吉利海峡,使不列颠成为罗马的一个行省。此外,他对历史也颇有研究,曾用希腊文写成大部头的史学著作。
  更为有趣的是,这位皇帝还写过一本题为《如何在掷骰子中获胜? 》的小册子,探讨了概率问题。原来,他和那些悠闲的大臣们爱好博弈,迷恋于掷骰子的游戏, 可惜这本书没有保存下来。直到1654年, 法国数学家帕斯卡尔和费尔马在通信中奠定概率论的基础, 他们的出发点依然是掷骰子那样的赌博游戏。
  欧拉与四位俄国女皇正如拿破仑是结交数学家最多的君王,与君王打交道最多的数学家是欧拉。
瑞士数学家欧拉。图片来源:wikipedia
  1727年,对20岁的瑞士小伙子欧拉来说是一个关键性的年份,那一年牛顿在伦敦去世,欧拉开始了学术生涯,他首次参加了巴黎科学院的有奖竞赛——在船上安置桅杆。这一传统的竞赛活动起始于1721年,吸引并激励了欧洲各国难以计数的年轻人从事科学研究。
  不幸而又幸运的是,欧拉的研究成果未获奖,加上此后求职母校巴塞尔大学未果,当年他便动身去了俄国,受聘于新成立的彼得堡科学院。可是,就在欧拉踏上俄罗斯领土的那一天(5月17日),邀请他来的女皇叶卡捷琳娜一世去世了。作为俄国最伟大的君王——彼得大帝的情妇和妻子,这位出身卑微的立陶宛女子虽在位仅仅两年多,却实现了丈夫建立科学院的遗愿。
  欧拉初到彼得堡的日子里,处境十分艰难。叶卡捷琳娜一世死后,权力旁落到一伙粗鲁残暴的家伙手里,甚至年幼的沙皇也在能够行使自己的职权以前死去。那些当权者把科学院及其研究者看成是可有可无的摆设,他们甚至考虑取消它,遣返所有的外籍人员。不过,欧拉埋头于研究,完全沉浸在自己的数学王国里。欧拉26岁那年,在彼得堡科学院做了数学教授,他准备在俄罗斯安家了,新娘是彼得大帝西游时带回来的画师的女儿,也是欧拉的瑞士同胞。那时俄国早有了一位新女皇,即彼得大帝的侄女安娜·伊万诺夫娜,虽说在安娜情夫的间接统治下俄罗斯经受了历史上最血腥的恐怖时期,但科学院的境况并没有变得更糟,欧拉这样的数学家和他研究的数学对当权者无害。
  欧拉很喜欢孩子,两任妻子(她们是同父异母的姐妹)先后生下了13个孩子,欧拉常常一边抱着婴儿一边写论文,稍长的孩子们则围绕着父亲嬉戏,他是在任何地方、任何条件下都能工作的少数几位大科学家之一。1740年,安娜女皇退位并于当年去世,欧拉遂接受了普鲁士国王腓德烈大帝的邀请,到柏林科学院担任数学部主任。欧拉在柏林生活了25年以后,回到了寒冷的彼得堡,他的妻子和儿孙们也一同返回。
  那时候,俄罗斯又有了一位新女皇叶卡捷琳娜二世,她在位的34年里,继承了彼得大帝未竞的事业,领导俄国全面参与欧洲的政治和文化生活,制订法典并厉行改革,同时夺取了波兰和克里米亚的大部分领土,故又被称作叶卡捷琳娜大帝。在欧拉回到彼得堡之后,女皇以皇室的规格接待他,拨给他一栋可供全家18人居住的大房子和成套的家具,并派去自己的一个厨师。
叶卡捷琳娜二世。图片来源:wikipedia
  虽说欧拉一生受到女皇们的眷顾和关照,但还是遭遇了许多不幸——两只眼睛先后失明;八个孩子先后夭折;晚年的一场大火几乎夺走了他的生命和手稿,幸亏瑞士仆人的奋力抢救,但他的房子连同藏书全被烧毁了。叶卡捷琳娜二世获悉后马上补偿了全部经济损失,欧拉重又投入了工作。
  值得一提的是,在安娜和叶卡捷琳娜二世之间,俄国还有过一位女皇,那便是彼得大帝的女儿伊丽莎白。她在位的20年间,欧拉一直生活在柏林,尽管如此,俄国方面照付给他院士津贴。也是在她在位期间,彼得堡科学院第一次有了本国院士——科学家兼诗人罗蒙诺索夫。有一年,俄罗斯军队入侵柏林远郊,欧拉的农场遭到了抢劫,女皇知道后加倍赔偿了他的损失。
  可以说,欧拉的一生得到了俄国四位女皇的垂青。他堪称历史上最著名的宫廷数学家,毕生往返于两个敌对的国度——俄罗斯和德意志,侍奉不同的皇帝和皇后。一次,腓特烈大帝命令欧拉给他的侄女授课,欧拉便动笔写下了一系列文笔优美的散文,后来变成畅销十多个国家的《给一个德国公主的信》,这应该是出自科学家手笔的科普或科学文化著作的早期范本。
作者名片
我是科学家,我来做科普。
欢迎转发到朋友圈。
更多有用有趣的科普知识,点击右上角关注“我是科学家”。
点赞我们会更有动力哦。

ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない////
人工知能はゼロ除算ができるでしょうか:

とても興味深く読みました:2014年2月2日
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


ゼロ除算関係論文・本


ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在
                     
割り算のできる人には、どんなことも難しくない
                           
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
                                                          
ベーダ・ヴェネラビリス(アイルランドの神学者)

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より

Please look the papers:
Reality of the Division by Zero z/0=0
DOI:
10.12732/ijam.v27i2.9.

Albert Einstein:

Blackholes are where God divided by zero.
I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
無限遠点は、実は数で0で表されていた。

地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0(628年→2014年2月2日)

リーマン球面における無限遠点は、実は、原点0に一致していました。

地球人はどうして、ゼロ除算1300年以上もできなかったのか? 
2015.7.24.9:10
意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。
生態系では、人類が がん細胞であった とならないとも 限らないのでは?
Einstein's Only Mistake: Division by Zero
何故ゼロ除算が不可能であったか理由
                                                
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。

Matrices and Division by Zero z/0 = 0

直線上を どこまでも行ったら、どこに行くでしょうか? 驚くべきことに 行き先があり、意外なところで 止まる。 これすごいことでは? 下記の図をよく見て、美しい解釈を考えてください。
我々の空間は実は そうなっていたと言えると思います。簡単な論文ですが、新らしい世界を拓いている(2016.7.24:06:21): (2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
DOI:10.12732/ijam.v27i2.9.

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
2つの0を足しても一つのゼロです:

『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html …… →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
地球平面説→地球球体説 地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説:アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????


ゼロ除算の証明・図|ysaitoh|note(ノート)  https://note.mu/ysaitoh/n/n2e5fef564997


ゼロ除算の発見はどうでしょうか:
Black holes are where God divided by zero:

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 
https://ameblo.jp/syoshinoris/entry-12287338180.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html
Division By Zero(ゼロ除算)1/0=0、0/0=0、z/0=0
ゼロ除算(ゼロじょざん、division by zero)1/0=0、0/0=0、z/0=0

ソクラテス・プラトン・アリストテレス その他
https://ameblo.jp/syoshinoris/entry-12328488611.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか
https://www.youtube.com/watch?v=iQld9cnDli4
〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか
https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s
〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか
https://www.youtube.com/watch?v=KjvFdzhn7Dc
NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか
https://www.youtube.com/watch?v=fWVv9puoTSs

再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて
https://ameblo.jp/syoshinoris/entry-12348847166.html

再生核研究所声明 416(2018.2.20):  ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
再生核研究所声明 417(2018.2.23):  ゼロ除算って何ですか - 中学生、高校生向き 回答
再生核研究所声明 418(2018.2.24):  割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか - 回答

2018.3.18.午前中 最後の講演: 日本数学会 東大駒場、函数方程式論分科会 講演書画カメラ用 原稿
The Japanese Mathematical Society, Annual Meeting at the University of Tokyo. 2018.3.18.
https://ameblo.jp/syoshinoris/entry-12361744016.html より
再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算
再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681

Einstein's Only Mistake: Division by Zero



ソクラテス・プラトン・アリストテレス その他


テーマ:
The null set is conceptually similar to the role of the number ``zero'' as it is used in quantum field theory. In quantum field theory, one can take the empty set, the vacuum, and generate all possible physical configurations of the Universe being modelled by acting on it with creation operators, and one can similarly change from one thing to another by applying mixtures of creation and anihillation operators to suitably filled or empty states. The anihillation operator applied to the vacuum, however, yields zero.

Zero in this case is the null set - it stands, quite literally, for no physical state in the Universe. The important point is that it is not possible to act on zero with a creation operator to create something; creation operators only act on the vacuum which is empty but not zero. Physicists are consequently fairly comfortable with the existence of operations that result in ``nothing'' and don't even require that those operations be contradictions, only operationally non-invertible.

It is also far from unknown in mathematics. When considering the set of all real numbers as quantities and the operations of ordinary arithmetic, the ``empty set'' is algebraically the number zero (absence of any quantity, positive or negative). However, when one performs a division operation algebraically, one has to be careful to exclude division by zero from the set of permitted operations! The result of division by zero isn't zero, it is ``not a number'' or ``undefined'' and is not in the Universe of real numbers.

Just as one can easily ``prove'' that 1 = 2 if one does algebra on this set of numbers as if one can divide by zero legitimately3.34, so in logic one gets into trouble if one assumes that the set of all things that are in no set including the empty set is a set within the algebra, if one tries to form the set of all sets that do not include themselves, if one asserts a Universal Set of Men exists containing a set of men wherein a male barber shaves all men that do not shave themselves3.35.

It is not - it is the null set, not the empty set, as there can be no male barbers in a non-empty set of men (containing at least one barber) that shave all men in that set that do not shave themselves at a deeper level than a mere empty list. It is not an empty set that could be filled by some algebraic operation performed on Real Male Barbers Presumed to Need Shaving in trial Universes of Unshaven Males as you can very easily see by considering any particular barber, perhaps one named ``Socrates'', in any particular Universe of Men to see if any of the sets of that Universe fit this predicate criterion with Socrates as the barber. Take the empty set (no men at all). Well then there are no barbers, including Socrates, so this cannot be the set we are trying to specify as it clearly must contain at least one barber and we've agreed to call its relevant barber Socrates. (and if it contains more than one, the rest of them are out of work at the moment).

Suppose a trial set contains Socrates alone. In the classical rendition we ask, does he shave himself? If we answer ``no'', then he is a member of this class of men who do not shave themselves and therefore must shave himself. Oops. Well, fine, he must shave himself. However, if he does shave himself, according to the rules he can only shave men who don't shave themselves and so he doesn't shave himself. Oops again. Paradox. When we try to apply the rule to a potential Socrates to generate the set, we get into trouble, as we cannot decide whether or not Socrates should shave himself.

Note that there is no problem at all in the existential set theory being proposed. In that set theory either Socrates must shave himself as All Men Must Be Shaven and he's the only man around. Or perhaps he has a beard, and all men do not in fact need shaving. Either way the set with just Socrates does not contain a barber that shaves all men because Socrates either shaves himself or he doesn't, so we shrug and continue searching for a set that satisfies our description pulled from an actual Universe of males including barbers. We immediately discover that adding more men doesn't matter. As long as those men, barbers or not, either shave themselves or Socrates shaves them they are consistent with our set description (although in many possible sets we find that hey, other barbers exist and shave other men who do not shave themselves), but in no case can Socrates (as our proposed single barber that shaves all men that do not shave themselves) be such a barber because he either shaves himself (violating the rule) or he doesn't (violating the rule). Instead of concluding that there is a paradox, we observe that the criterion simply doesn't describe any subset of any possible Universal Set of Men with no barbers, including the empty set with no men at all, or any subset that contains at least Socrates for any possible permutation of shaving patterns including ones that leave at least some men unshaven altogether.

https://webhome.phy.duke.edu/.../axioms/axioms/Null_Set.html

 I understand your note as if you are saying the limit is infinity but nothing is equal to infinity, but you concluded corretly infinity is undefined. Your example of getting the denominator smaller and smalser the result of the division is a very large number that approches infinity. This is the intuitive mathematical argument that plunged philosophy into mathematics. at that level abstraction mathematics, as well as phyisics become the realm of philosophi. The notion of infinity is more a philosopy question than it is mathamatical. The reason we cannot devide by zero is simply axiomatic as Plato pointed out. The underlying reason for the axiom is because sero is nothing and deviding something by nothing is undefined. That axiom agrees with the notion of limit infinity, i.e. undefined. There are more phiplosphy books and thoughts about infinity in philosophy books than than there are discussions on infinity in math books.

http://mathhelpforum.com/algebra/223130-dividing-zero.html


ゼロ除算の歴史:ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。

An Early Reference to Division by Zero C. B. Boyer
http://www.fen.bilkent.edu.tr/~franz/M300/zero.pdf



5000年?????

2017年09月01日(金)NEW !
テーマ:数学
Former algebraic approach was formally perfect, but it merely postulated existence of sets and morphisms [18] without showing methods to construct them. The primary concern of modern algebras is not how an operation can be performed, but whether it maps into or onto and the like abstract issues [19–23]. As important as this may be for proofs, the nature does not really care about all that. The PM’s concerns were not constructive, even though theoretically significant. We need thus an approach that is more relevant to operations performed in nature, which never complained about morphisms or the allegedly impossible division by zero, as far as I can tell. Abstract sets and morphisms should be de-emphasized as hardly operational. My decision to come up with a definite way to implement the feared division by zero was not really arbitrary, however. It has removed a hidden paradox from number theory and an obvious absurd from algebraic group theory. It was necessary step for full deployment of constructive, synthetic mathematics (SM) [2,3]. Problems hidden in PM implicitly affect all who use mathematics, even though we may not always be aware of their adverse impact on our thinking. Just take a look at the paradox that emerges from the usual prescription for multiplication of zeros that remained uncontested for some 5000 years 0 0 ¼ 0 ) 0 1=1 ¼ 0 ) 0 1 ¼ 0 1) 1ð? ¼ ?Þ1 ð0aÞ This ‘‘fact’’ was covered up by the infamous prohibition on division by zero [2]. How ingenious. If one is prohibited from dividing by zero one could not obtain this paradox. Yet the prohibition did not really make anything right. It silenced objections to irresponsible reasonings and prevented corrections to the PM’s flamboyant axiomatizations. The prohibition on treating infinity as invertible counterpart to zero did not do any good either. We use infinity in calculus for symbolic calculations of limits [24], for zero is the infinity’s twin [25], and also in projective geometry as well as in geometric mapping of complex numbers. Therein a sphere is cast onto the plane that is tangent to it and its free (opposite) pole in a point at infinity [26–28]. Yet infinity as an inverse to the natural zero removes the whole absurd (0a), for we obtain [2] 0 ¼ 1=1 ) 0 0 ¼ 1=12 > 0 0 ð0bÞ Stereographic projection of complex numbers tacitly contradicted the PM’s prescribed way to multiply zeros, yet it was never openly challenged. The old formula for multiplication of zeros (0a) is valid only as a practical approximation, but it is group-theoretically inadmissible in no-nonsense reasonings. The tiny distinction in formula (0b) makes profound theoretical difference for geometries and consequently also for physical applications. T
https://www.plover.com/misc/CSF/sdarticle.pdf

とても興味深く読みました:


10,000 Year Clock
by Renny Pritikin
Conversation with Paolo Salvagione, lead engineer on the 10,000-year clock project, via e-mail in February 2010.

For an introduction to what we’re talking about here’s a short excerpt from a piece by Michael Chabon, published in 2006 in Details: ….Have you heard of this thing? It is going to be a kind of gigantic mechanical computer, slow, simple and ingenious, marking the hour, the day, the year, the century, the millennium, and the precession of the equinoxes, with a huge orrery to keep track of the immense ticking of the six naked-eye planets on their great orbital mainspring. The Clock of the Long Now will stand sixty feet tall, cost tens of millions of dollars, and when completed its designers and supporters plan to hide it in a cave in the Great Basin National Park in Nevada, a day’s hard walking from anywhere. Oh, and it’s going to run for ten thousand years. But even if the Clock of the Long Now fails to last ten thousand years, even if it breaks down after half or a quarter or a tenth that span, this mad contraption will already have long since fulfilled its purpose. Indeed the Clock may have accomplished its greatest task before it is ever finished, perhaps without ever being built at all. The point of the Clock of the Long Now is not to measure out the passage, into their unknown future, of the race of creatures that built it. The point of the Clock is to revive and restore the whole idea of the Future, to get us thinking about the Future again, to the degree if not in quite the way same way that we used to do, and to reintroduce the notion that we don’t just bequeath the future—though we do, whether we think about it or not. We also, in the very broadest sense of the first person plural pronoun, inherit it.

Renny Pritikin: When we were talking the other day I said that this sounds like a cross between Borges and the vast underground special effects from Forbidden Planet. I imagine you hear lots of comparisons like that…

Paolo Salvagione: (laughs) I can’t say I’ve heard that comparison. A childhood friend once referred to the project as a cross between Tinguely and Fabergé. When talking about the clock, with people, there’s that divide-by-zero moment (in the early days of computers to divide by zero was a sure way to crash the computer) and I can understand why. Where does one place, in one’s memory, such a thing, such a concept? After the pause, one could liken it to a reboot, the questions just start streaming out.

RP: OK so I think the word for that is nonplussed. Which the thesaurus matches with flummoxed, bewildered, at a loss. So the question is why even (I assume) fairly sophisticated people like your friends react like that. Is it the physical scale of the plan, or the notion of thinking 10,000 years into the future—more than the length of human history?

PS: I’d say it’s all three and more. I continue to be amazed by the specificity of the questions asked. Anthropologists ask a completely different set of questions than say, a mechanical engineer or a hedge fund manager. Our disciplines tie us to our perspectives. More than once, a seemingly innocent question has made an impact on the design of the clock. It’s not that we didn’t know the answer, sometimes we did, it’s that we hadn’t thought about it from the perspective of the person asking the question. Back to your question. I think when sophisticated people, like you, thread this concept through their own personal narrative it tickles them. Keeping in mind some people hate to be tickled.

RP: Can you give an example of a question that redirected the plan? That’s really so interesting, that all you brainiacs slaving away on this project and some amateur blithely pinpoints a problem or inconsistency or insight that spins it off in a different direction. It’s like the butterfly effect.

PS: Recently a climatologist pointed out that our equation of time cam, (photo by Rolfe Horn) (a cam is a type of gear: link) a device that tracks the difference between solar noon and mundane noon as well as the precession of the equinoxes, did not account for the redistribution of water away from the earth’s poles. The equation-of-time cam is arguably one of the most aesthetically pleasing parts of the clock. It also happens to be one that is fairly easy to explain. It visually demonstrates two extremes. If you slice it, like a loaf of bread, into 10,000 slices each slice would represent a year. The outside edge of the slice, let’s call it the crust, represents any point in that year, 365 points, 365 days. You could, given the right amount of magnification, divide it into hours, minutes, even seconds. Stepping back and looking at the unsliced cam the bottom is the year 2000 and the top is the year 12000. The twist that you see is the precession of the equinoxes. Now here’s the fun part, there’s a slight taper to the twist, that’s the slowing of the earth on its axis. As the ice at the poles melts we have a redistribution of water, we’re all becoming part of the “slow earth” movement.

RP: Are you familiar with Charles Ray’s early work in which you saw a plate on a table, or an object on the wall, and they looked stable, but were actually spinning incredibly slowly, or incredibly fast, and you couldn’t tell in either case? Or, more to the point, Tim Hawkinson’s early works in which he had rows of clockwork gears that turned very very fast, and then down the line, slower and slower, until at the end it approached the slowness that you’re dealing with?

PS: The spinning pieces by Ray touches on something we’re trying to avoid. We want you to know just how fast or just how slow the various parts are moving. The beauty of the Ray piece is that you can’t tell, fast, slow, stationary, they all look the same. I’m not familiar with the Hawkinson clockwork piece. I’ve see the clock pieces where he hides the mechanism and uses unlikely objects as the hands, such as the brass clasp on the back of a manila envelope or the tab of a coke can.

RP: Spin Sink (1 Rev./100 Years) (1995), in contrast, is a 24-foot-long row of interlocking gears, the smallest of which is driven by a whirring toy motor that in turn drives each consecutively larger and more slowly turning gear up to the largest of all, which rotates approximately once every one hundred years.

PS: I don’t know how I missed it, it’s gorgeous. Linking the speed that we can barely see with one that we rarely have the patience to wait for.

RP: : So you say you’ve opted for the clock’s time scale to be transparent. How will the clock communicate how fast it’s going?

PS: By placing the clock in a mountain we have a reference to long time. The stratigraphy provides us with the slowest metric. The clock is a middle point between millennia and seconds. Looking back 10,000 years we find the beginnings of civilization. Looking at an earthenware vessel from that era we imagine its use, the contents, the craftsman. The images painted or inscribed on the outside provide some insight into the lives and the languages of the distant past. Often these interpretations are flawed, biased or over-reaching. What I’m most enchanted by is that we continue to construct possible pasts around these objects, that our curiosity is overwhelming. We line up to see the treasures of Tut, or the remains of frozen ancestors. With the clock we are asking you to create possible futures, long futures, and with them the narratives that made them happen.

https://openspace.sfmoma.org/2010/02/10000-year-clock/


ゼロ除算は定義が問題です:

再生核研究所声明 148(2014.2.12) 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志 https://blogs.yahoo.co.jp/kbdmm360/69056435.html

再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?http://reproducingkernel.blogspot.jp/2014/07/201473010000.html

0 件のコメント:

コメントを投稿