2018年2月18日日曜日

悬案?传奇?困惑世间智者358年的谜 中国创业与投资专业门户 年轻人多读书,少刷屏!

悬案?传奇?困惑世间智者358年的谜

中国创业与投资专业门户
年轻人多读书,少刷屏!
在吃喝玩乐吗?【没有时间读书吗?】系列,帮你读!我们从最近一年红杉中国、IDG资本、经纬中国……力荐的书目中精挑细选出来了8本书,每天一本,慢慢读来……
文 | 热爱学习的投资界
书名:《费马大定律》
推荐指数: * * * * *
推荐机构:经纬中国、原子创投
推荐者语:
经纬中国熊飞:《费马大定理》讲述了一个科学家12年攻克“不可能解决的”数学难题。故事的主人公是一个孤独的数学教授,12年间不问世事,最终解决了费马大定理的证明。不是每一个人都有天赋攻克数学难题,体验到科学的崇高。但是如果你能像这位数学教授一样理性规划自己的人生,为自己热爱的事业储备知识,执着努力,自然也能掌握自己的命运,在你所喜欢的领域获得成功。
原子创投冯一名:300多年前,费马给人类出了一道谜题,他说自己找到了答案但是书的空白太小写不下。300年来,多少人类最顶尖聪明的大脑为之神魂颠倒——在解谜,更是用每一个细胞体会数学之精妙。
看似晦涩的书名很容易让人望而却步,事实上,它兼具知识性、科普性和可读性。阅读它,你将身临数学近代史,体验一场充满爱恨情仇、勇气与友谊的英雄主义浪漫史诗。深入思考,也许你会感受到历史滚滚车轮,过去几十年互联网的发展、正在经历的今天最火的比特币,和费马大定理似乎都有着千丝万缕的神奇联系。疲于追逐风口让创业者身心俱疲,回顾历史,以史鉴今,或许会有不同的惊喜发现。
经典语句摘要
1、大定理就像数学中的塞壬,诱惑天才人物走近它,结果却打破了他们的希望。任何卷入费马大定理的数学家都冒着白白浪费生命的风险,然而任何能做出关键的突破工作的人也会因解决了世界上最困难的问题而载入史册。
2、欧拉停止了生命,也停止了计算。
3、在这里聚集的一大群人中,有些受奖励物的诱惑而来,另一些人则因对名誉和荣耀的企求和受野心的驱使而来,但他们中间也有少数人来这里是为了观察和理解这里发生的一切。 生活同样如此。有些人因爱好财富而被左右,另一些人因热衷于权力和支配而盲从,但是最优秀的一类人则献身于发现生活本身的意义和目的。
4、上帝之存在是因为数学是相容的,而魔王之存在是因为我们不能证明数学是相容的。
5、“我是一个说谎者”逻辑上可以证明库特哥德尔提出的第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。
“这里空白太小,我写不下了”
大约1637年,法国学者费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”
就是这几句简短的话,成了数学界最大的悬案。那些被侥幸发现的蛛丝马迹成了后来长达358年数学家们的不幸。
可以说,证明费马大定理的过程是一部数学史。万物皆数,数学之美在于其中没有一句废话。不止是数学,人类在各领域都走着相似的路:寻找某种确定性,寻找、迷失、再上路。无论是生活还是创业投资,我们都可以从书中找区别于其他的独特感悟。
年轻人的传奇
在《费马大定律》里,数学江湖是属于年轻人的。
少年英雄尽情挥洒展示他们的智慧:库特·哥德尔提出他的不可判定性定理时,年仅25岁;挪威的阿贝尔在19岁时做出了他对数学的最伟大的贡献,法国数学家埃米尔特评价“他留下的思想可供数学家们工作 500年”......
“年轻人应该证明定理,而老年人则应该写书。”英国数学家哈代说,“数学较之别的艺术或科学,更是年轻人的游戏。”
所有创新前沿的领域,都适合年轻人来谱写传奇。
兴趣和专注
被称为最伟大的业余数学家的费马,是一名法官。他专心研究数学的原因,是他对于数学极强的兴趣。
寻找证明的道路极其漫长。热尔曼、谷山、欧拉、志村五郎、沃尔夫斯凯尔、怀尔斯等等,一代又一代的数学天才前赴后继,向这一猜想发起挑战,他们付出的不仅仅是时间这么简单。
他们有的人奠定了数论基础、有的为提出费马定理铺平道路,有的提出问题却不给解答,有的人尝试了却失败,有的人没有想过证明这个定理却因为自己另一个数学理论创新而成为整个解答的关键,而这个解答却一度被学界不能理解而弃如敝履,有的人在攀登数学高峰的途中逝世。
沃尔夫斯凯尔面对人生失意决心自尽却因死前无聊看到了这个费马定理而心生兴趣尝试解答最后放弃自杀,数学将他从死神身边唤回。
1908年,沃尔夫斯凯尔写下了他新的遗嘱,将其一部分财产设立奖项,规定,10万马克的奖金,奖给任何能证明费马大定理的人。
仅仅有兴趣是不够了,还需要百分之百的专注。如乔布斯透露的成功秘诀之一:“你的时间有限,不要浪费于重复别人的生活,不要让别人的观点淹没你内心的声音。你要找到心底的热爱、专注、和简单去创造属于自己的奇迹。”
“我们必须知道,我们必将知道”
面对费马大定理,数学家们经受了三个多世纪的壮烈失败,任何卷入其中的人都冒着白白浪费生命的风险。但他们为何还要前赴后继?仅是因为巨额的奖金?不,不是。
德国著名数学家戴维·希尔伯特退休时有感言:“我们必须知道,我们必将知道。”
天才最大特点是他们只要稍将注意力投入到某个领域内,他们的名字就会被记载于这个领域的发展史册,而这个领域也因为他们的参与有了别样光彩。
二十世纪末,一位数学家这样谈到费马大定理:纯粹数学家就是爱好挑战。他们喜欢解答未解答的问题。你着手解一个使你迷惑的问题,你无法理解它,它是那么的复杂,你一点都看不明白。但是后来当你解出它时,你会不可思议的感到它是多么的美好,组合的又是多么的精巧。
如同创业和投资一样,无论在创业初期,还是在生死攸关的节点,接受它们,并享受成功度过难关亦或是敲钟时的那种单纯满足感。
进入死胡同?换种方式思考
数学的魅力,在于对人智商和好奇心的挑战。
正是英国剑桥的数学家安德鲁·怀尔斯,花了整整10年时间,在费马写下那行批注358年之后,对费马大定理给出了正确的答案,一个无懈可击的证明。但他并不是去找费马丢失的证明,而是去证明谷山-志村猜想,进而证明费马大定理。
1986年,怀尔斯做出了那个改变其生命历程的决定。随后他放弃了所有与证明费马大定理无直接关系的工作,在完全保密的状态下,展开了对这个困扰世间智者的谜题的孤独挑战,他的妻子是唯一知情人。
1993年6月23日,剑桥牛顿研究所,怀尔斯进行了20世纪最重要的一次数学讲座,200名数学家被震惊,他们看到300多年来第一次,费马的命题被征服。
故事并没有就此结束,怀尔斯长达200页的手稿投交到《数学发明》杂志,在庞杂苛刻的审稿过程中,需要加强证明。1995年9月19日,一个星期一的早晨,他做最后的检视。
一个突然迸发的灵感使他的苦难走到了尽头:虽然那个方法不能完全行得通,但只需要可以使另一个他曾经放弃的理论奏效,正确答案就可以出现在废墟之中——两个分别不足以解决问题的方法结合在一起,就可以完美地互相补足。
如此,费马大定律之谜被彻底画上了句号。返回搜狐,查看更多
声明:本文由入驻搜狐号的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
 
とても興味深く読みました:ゼロ除算の発見4周年を超えました:
 
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 412:  The 4th birthday of the division by zero $z/0=0$ \\
(2018.2.2)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle
 The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
 For the details, see the references and the site: http://okmr.yamatoblog.net/

We wrote a global book manuscript \cite{s18} with 154 pages
 and stated in the preface and last section of the manuscript as follows:
\bigskip


{\bf Preface}
\medskip

 The division by zero has a long and mysterious story over the world (see, for example, H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628. In particular, note that Brahmagupta (598 -668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in
Brhmasphuasiddhnta. Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is right and suitable.

 The division by zero $1/0=0/0=z/0$ itself will be quite clear and trivial with several natural extensions of the fractions against the mysterously long history, as we can see from the concepts of the Moore-Penrose generalized inverses or the Tikhonov regularization method to the fundamental equation $az=b$, whose solution leads to the definition $z =b/a$.

  However, the result (definition) will show that
      for the elementary mapping
\begin{equation}
W = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined from the form}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere (\cite{ahlfors}). �As the representation of the point at infinity of the Riemann sphere by the
zero $z =  0$, we will see some delicate relations between $0$ and $\infty$ which show a strong
discontinuity at the point of infinity on the Riemann sphere. We did not consider any value of the elementary function $W =1/ z $ at the origin $z = 0$, because we did not consider the division by zero
$1/ 0$ in a good way. Many and many people consider its value by the limiting like $+\infty $ and  $- \infty$ or the
point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or
based on the basic idea of Aristotle.  --
 For the related Greece philosophy, see \cite{a,b,c}. However, as the division by zero we will consider its value of
the function $W =1 /z$ as zero at $z = 0$. We will see that this new definition is valid widely in
mathematics and mathematical sciences, see  (\cite{mos,osm}) for example. Therefore, the division by zero will give great impacts to calculus, Euclidean geometry, analytic geometry, differential equations,  complex analysis in the undergraduate level and to our basic ideas for the space and universe.

We have to arrange globally our modern mathematics in our undergraduate level. Our common sense on the division by zero will be wrong, with our basic idea on the space and the universe since Aristotle and Euclid. We would like to show clearly these facts in this book. The content is in the undergraduate level.

\bigskip
\bigskip

{\bf Conclusion}
\medskip


 Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

This book is an elementary mathematics  on our division by zero as the first publication of  books for the topics. The contents  have wide connections to various fields beyond mathematics. The author expects the readers write some philosophy, papers and essays on the division by zero from this simple source book.

The division by zero theory may be developed and expanded greatly as in the author's conjecture whose break theory was recently given surprisingly and deeply by  Professor Qi'an Guan \cite{guan} since 30 years proposed  in \cite{s88} (the original is in \cite {s79}).

We have to arrange globally our modern mathematics with our division by zero  in our undergraduate level.

We have to change our basic ideas for our space and world.

We have to change globally our textbooks and scientific books on the division by zero.






\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.


\bibitem{cs}
L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

\bibitem{guan}
Q.  Guan,  A proof of Saitoh's conjecture for conjugate Hardy H2 kernels, arXiv:1712.04207.


\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

\bibitem{ms18}
T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication)

\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 2017), 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
(Submitted for publication).

\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. {\bf 3}1, No. 8. (Oct., 1924), pp. 387-389.


\bibitem{s79}
S. Saitoh, The Bergman norm and the Szeg$\ddot{o}$ norm, Trans. Amer. Math. Soc. {\bf 249} (1979), no. 2, 261--279.

\bibitem{s88}
 S. Saitoh, Theory of reproducing kernels and its applications. Pitman Research Notes in Mathematics Series, {\bf 189}. Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1988. x+157 pp. ISBN: 0-582-03564-3

\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer) .

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{s18}
S. Saitoh, Division by zero calculus (154 pages: draft): (http://okmr.yamatoblog.net/)

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{a}
https://philosophy.kent.edu/OPA2/sites/default/files/012001.pdf

\bibitem{b}
http://publish.uwo.ca/~jbell/The 20Continuous.pdf

\bibitem{c}
http://www.mathpages.com/home/kmath526/kmath526.htm



\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.

\bibitem{362}
Announcement 362(2017.5.5): Discovery of the division by zero as  $0/0=1/0=z/0=0$

 \bibitem{380}
Announcement 380 (2017.8.21):  What is the zero?

\bibitem{388}
Announcement 388(2017.10.29):   Information and ideas on zero and division by zero (a project).

 \bibitem{409}
Announcement 409 (2018.1.29.):  Various Publication Projects on the Division by Zero.

\bibitem{410}
Announcement 410 (2018.1 30.):  What is mathematics? -- beyond logic; for great challengers on the division by zero.


\end{thebibliography}

\end{document}


List of division by zero:

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.

Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]

Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14

L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).

T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)

H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.

H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.

S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .
https://sites.google.com/site/sandrapinelas/icddea-2017 報告


1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html
1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html
1/0=0、0/0=0、z/0=0

ソクラテス・プラトン・アリストテレス その他


Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか


〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか


〔NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

NHKスペシャル 神の数式 完全版 第4回 異次元宇宙は存在するか


再生核研究所声明 411(2018.02.02):  ゼロ除算発見4周年を迎えて

ゼロ除算の論文

Mysterious Properties of the Point at Infinity

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197                                          

0 件のコメント:

コメントを投稿