2018年2月10日土曜日

报考在职研究生MBA 这23个数学公式需熟记 原标题:如何记忆MBA辅导课程的数学必备公式?

报考在职研究生MBA 这23个数学公式需熟记

 
原标题:如何记忆MBA辅导课程的数学必备公式?
  报考在职研究生MBA,数学是必考的,很多人都为此头疼,它也对考试的整体成绩起着决定性的作用。MBA课程中数学对基础的考查不仅是考查对知识的记忆,还更重视在理论基础上的应用。下面大家整理了23个必备公式,希望对各位备考生有帮助!
图片来源于网络图片来源于网络
  1 .定理1 在角的平分线上的点到这个角的两边的距离相等
  2 .定理2 到一个角的两边的距离相同的点,在这个角的平分线上
  3 .角的平分线是到角的两边距离相等的所有点的集合
  4 .等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
  5 .推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
  6 .等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  7 .推论3 等边三角形的各角都相等,并且每一个角都等于60°
  8 .等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  9 .推论1 三个角都相等的三角形是等边三角形
  10 .推论 2 有一个角等于60°的等腰三角形是等边三角形
  11 .在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  12 .直角三角形斜边上的中线等于斜边上的一半
  13 .定理 线段垂直平分线上的点和这条线段两个端点的距离相等
  14.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
  15 .线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
  16 .定理1 关于某条直线对称的两个图形是全等形
  17 .定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
  18 .定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
  19.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
  20.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
  21.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
  22.定理 四边形的内角和等于360°
  23.多边形内角和定理 n边形的内角的和等于(n-2)×180°24.推论 任意多边的外角和等于360
  俗话说:聚沙成塔,只要平时多练习多做题,就能取得好成绩!
  本文转载自《月球上的人在等葡萄成熟》的新浪博客,点击阅读原文
  小编注:本文为转载新浪博客文章,观点只代表作者本人,不能代表新浪立场,新浪尊重原创。
  国际学校择校巡展商务合作请联系尹老师:010-58983664

とても興味深く読みました:ゼロ除算の発見4周年超えた:

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 409:  Various Publication Projects on the Division by Zero\\
(2018.1.29.)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle
 The Institute of Reproducing Kernels is dealing with the theory of division by zero calculus and declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristoteles (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
In particular,  Brahmagupta defined as $0/0=0$ in Brhmasphuasiddhnta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we showed that his definition is suitable.
 For the details, see the references and the site: http://okmr.yamatoblog.net/

We wrote two global book manuscripts \cite{s18} with 154 pages and \cite{so18} with many figures for some general people. Their main points are:

\begin{itemize}

\item The division by zero and division by zero calculus are new elementary and fundamental mathematics in the undergraduate level.

\item They introduce a new space   since Aristoteles (BC384 - BC322) and Euclid (BC 3 Century - ) with many exciting new phenomena and properties with general interest, not specialized and difficult topics. However, their properties are mysterious and very attractive.

\item  The contents are very elementary,  however  very exciting with general interest.

\item The contents give great impacts to our basic ideas on the universe and  human beings.

\end{itemize}

Meanwhile, the representations of the contents are very important and delicate with delicate feelings to the division by zero with a long and mysterious history. Therefore, we hope the representations of the division by zero as follows:

\begin{itemize}

\item

Various book publications by many native languages and with the author's idea and feelings.

\item

Some publications are like arts and some comic style books with pictures.

\item

Some T shirts design, some pictures, monument design may be considered.

\end{itemize}

The authors above may be expected to contribute to our culture,  education, common communications and enjoyments.
\medskip

For the people having the interest on the above projects, we will send our book sources with many figure files.

\medskip

 How will be our project introducing our new world since Euclid?

\medskip

Of course, as mathematicians we have to publish new books on

\medskip

Calculus,  Differential Equations and Complex Analysis, at least and soon, in order to {\bf correct them} in some complete and beautiful ways.

\medskip

Our topics will be interested in over 1000 millions people over the world on the world history.


\bibliographystyle{plain}
\begin{thebibliography}{10}



\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms16}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58
Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

\bibitem{ms18}
T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication)

\bibitem{mms18}
T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{msy}
H. Michiwaki, S. Saitoh and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura and S. Saitoh,
 Division by Zero $z/0 = 0$ in Euclidean Spaces,
 International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 2017), 1-16.


\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

\bibitem{os}
H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

\bibitem{o}
H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

\bibitem{os18}
H. Okumura and S. Saitoh,
Applications of the division by zero calculus to Wasan geometry.
(Submitted for publication).



\bibitem{ps18}
S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. {\bf 3}1, No. 8. (Oct., 1924), pp. 387-389.



\bibitem{s14}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer) .

\bibitem{s17}
S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

\bibitem{s18}
S. Saitoh, Division by zero calculus (154 pages: draft): http//okmr.yamatoblog.net/


\bibitem{so18}
S. Saitoh and H. Okumura, Division by Zero Calculus in Figures --  Our New Space --


\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.



\end{thebibliography}

\end{document}

 List of division by zero:

\bibitem{os18}
H. Okumura and S. Saitoh,
Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum.

Saburou Saitoh, Mysterious Properties of the Point at Infinity、
arXiv:1712.09467 [math.GM]

Hiroshi Okumura and Saburou Saitoh
The Descartes circles theorem and division by zero calculus. 2017.11.14

L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

T. Matsuura and S. Saitoh,
Matrices and division by zero z/0=0,
Advances in Linear Algebra \& Matrix Theory, 2016, 6, 51-58
Published Online June 2016 in SciRes. http://www.scirp.org/journal/alamt
\\ http://dx.doi.org/10.4236/alamt.2016.62007.

T. Matsuura and S. Saitoh,
Division by zero calculus and singular integrals. (Submitted for publication).

T. Matsuura, H. Michiwaki and S. Saitoh,
$\log 0= \log \infty =0$ and applications. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics.)

H. Michiwaki, S. Saitoh and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

H. Michiwaki, H. Okumura and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces,
International Journal of Mathematics and Computation, 28(2017); Issue 1, 2017), 1-16.

H. Okumura, S. Saitoh and T. Matsuura, Relations of $0$ and $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017), 70-77.

S. Pinelas and S. Saitoh,
Division by zero calculus and differential equations. (Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics).

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, {\bf 177}(2016), 151-182. (Springer) .




0 件のコメント:

コメントを投稿