2017年11月19日日曜日

Socrates:Plato:Aristotle  その他

Socrates:Plato:Aristotle  その他
ソクラテス・プラトン・アリストテレス その他
The null set is conceptually similar to the role of the number ``zero'' as it is used in quantum field theory. In quantum field theory, one can take the empty set, the vacuum, and generate all possible physical configurations of the Universe being modelled by acting on it with creation operators, and one can similarly change from one thing to another by applying mixtures of creation and anihillation operators to suitably filled or empty states. The anihillation operator applied to the vacuum, however, yields zero.
Zero in this case is the null set - it stands, quite literally, for no physical state in the Universe. The important point is that it is not possible to act on zero with a creation operator to create something; creation operators only act on the vacuum which is empty but not zero. Physicists are consequently fairly comfortable with the existence of operations that result in ``nothing'' and don't even require that those operations be contradictions, only operationally non-invertible.
It is also far from unknown in mathematics. When considering the set of all real numbers as quantities and the operations of ordinary arithmetic, the ``empty set'' is algebraically the number zero (absence of any quantity, positive or negative). However, when one performs a division operation algebraically, one has to be careful to exclude division by zero from the set of permitted operations! The result of division by zero isn't zero, it is ``not a number'' or ``undefined'' and is not in the Universe of real numbers.
Just as one can easily ``prove'' that 1 = 2 if one does algebra on this set of numbers as if one can divide by zero legitimately3.34, so in logic one gets into trouble if one assumes that the set of all things that are in no set including the empty set is a set within the algebra, if one tries to form the set of all sets that do not include themselves, if one asserts a Universal Set of Men exists containing a set of men wherein a male barber shaves all men that do not shave themselves3.35.
It is not - it is the null set, not the empty set, as there can be no male barbers in a non-empty set of men (containing at least one barber) that shave all men in that set that do not shave themselves at a deeper level than a mere empty list. It is not an empty set that could be filled by some algebraic operation performed on Real Male Barbers Presumed to Need Shaving in trial Universes of Unshaven Males as you can very easily see by considering any particular barber, perhaps one named ``Socrates'', in any particular Universe of Men to see if any of the sets of that Universe fit this predicate criterion with Socrates as the barber. Take the empty set (no men at all). Well then there are no barbers, including Socrates, so this cannot be the set we are trying to specify as it clearly must contain at least one barber and we've agreed to call its relevant barber Socrates. (and if it contains more than one, the rest of them are out of work at the moment).
Suppose a trial set contains Socrates alone. In the classical rendition we ask, does he shave himself? If we answer ``no'', then he is a member of this class of men who do not shave themselves and therefore must shave himself. Oops. Well, fine, he must shave himself. However, if he does shave himself, according to the rules he can only shave men who don't shave themselves and so he doesn't shave himself. Oops again. Paradox. When we try to apply the rule to a potential Socrates to generate the set, we get into trouble, as we cannot decide whether or not Socrates should shave himself.
Note that there is no problem at all in the existential set theory being proposed. In that set theory either Socrates must shave himself as All Men Must Be Shaven and he's the only man around. Or perhaps he has a beard, and all men do not in fact need shaving. Either way the set with just Socrates does not contain a barber that shaves all men because Socrates either shaves himself or he doesn't, so we shrug and continue searching for a set that satisfies our description pulled from an actual Universe of males including barbers. We immediately discover that adding more men doesn't matter. As long as those men, barbers or not, either shave themselves or Socrates shaves them they are consistent with our set description (although in many possible sets we find that hey, other barbers exist and shave other men who do not shave themselves), but in no case can Socrates (as our proposed single barber that shaves all men that do not shave themselves) be such a barber because he either shaves himself (violating the rule) or he doesn't (violating the rule). Instead of concluding that there is a paradox, we observe that the criterion simply doesn't describe any subset of any possible Universal Set of Men with no barbers, including the empty set with no men at all, or any subset that contains at least Socrates for any possible permutation of shaving patterns including ones that leave at least some men unshaven altogether.
https://webhome.phy.duke.edu/.../axioms/axioms/Null_Set.html
I understand your note as if you are saying the limit is infinity but nothing is equal to infinity, but you concluded corretly infinity is undefined. Your example of getting the denominator smaller and smalser the result of the division is a very large number that approches infinity. This is the intuitive mathematical argument that plunged philosophy into mathematics. at that level abstraction mathematics, as well as phyisics become the realm of philosophi. The notion of infinity is more a philosopy question than it is mathamatical. The reason we cannot devide by zero is simply axiomatic as Plato pointed out. The underlying reason for the axiom is because sero is nothing and deviding something by nothing is undefined. That axiom agrees with the notion of limit infinity, i.e. undefined. There are more phiplosphy books and thoughts about infinity in philosophy books than than there are discussions on infinity in math books.
http://mathhelpforum.com/algebra/223130-dividing-zero.html
ゼロ除算の歴史:ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。
An Early Reference to Division by Zero C. B. Boyer
http://www.fen.bilkent.edu.tr/~franz/M300/zero.pdf
OUR HUMANITY AND DIVISION BY ZERO
Lea esta bitácora en español
There is a mathematical concept that says that division by zero has no meaning, or is an undefined expression, because it is impossible to have a real number that could be multiplied by zero in order to obtain another number different from zero.
While this mathematical concept has been held as true for centuries, when it comes to the human level the present situation in global societies has, for a very long time, been contradicting it. It is true that we don’t all live in a mathematical world or with mathematical concepts in our heads all the time. However, we cannot deny that societies around the globe are trying to disprove this simple mathematical concept: that division by zero is an impossible equation to solve.
Yes! We are all being divided by zero tolerance, zero acceptance, zero love, zero compassion, zero willingness to learn more about the other and to find intelligent and fulfilling ways to adapt to new ideas, concepts, ways of doing things, people and cultures. We are allowing these ‘zero denominators’ to run our equations, our lives, our souls.
Each and every single day we get more divided and distanced from other people who are different from us. We let misinformation and biased concepts divide us, and we buy into these aberrant concepts in such a way, that we get swept into this division by zero without checking our consciences first.
I believe, however, that if we change the zeros in any of the “divisions by zero” that are running our lives, we will actually be able to solve the non-mathematical concept of this equation: the human concept.
>I believe deep down that we all have a heart, a conscience, a brain to think with, and, above all, an immense desire to learn and evolve. And thanks to all these positive things that we do have within, I also believe that we can use them to learn how to solve our “division by zero” mathematical impossibility at the human level. I am convinced that the key is open communication and an open heart. Nothing more, nothing less.
Are we scared of, or do we feel baffled by the way another person from another culture or country looks in comparison to us? Are we bothered by how people from other cultures dress, eat, talk, walk, worship, think, etc.? Is this fear or bafflement so big that we much rather reject people and all the richness they bring within?
How about if instead of rejecting or retreating from that person—division of our humanity by zero tolerance or zero acceptance—we decided to give them and us a chance?
How about changing that zero tolerance into zero intolerance? Why not dare ask questions about the other person’s culture and way of life? Let us have the courage to let our guard down for a moment and open up enough for this person to ask us questions about our culture and way of life. How about if we learned to accept that while a person from another culture is living and breathing in our own culture, it is totally impossible for him/her to completely abandon his/her cultural values in order to become what we want her to become?
Let’s be totally honest with ourselves at least: Would any of us really renounce who we are and where we come from just to become what somebody else asks us to become?
If we are not willing to lose our identity, why should we ask somebody else to lose theirs?
I believe with all my heart that if we practiced positive feelings—zero intolerance, zero non-acceptance, zero indifference, zero cruelty—every day, the premise that states that division by zero is impossible would continue being true, not only in mathematics, but also at the human level. We would not be divided anymore; we would simply be building a better world for all of us.
Hoping to have touched your soul in a meaningful way,
Adriana Adarve, Asheville, NC
https://adarvetranslations.com/…/our-humanity-and-division…/
5000年?????
2017年09月01日(金)NEW !
テーマ:数学
Former algebraic approach was formally perfect, but it merely postulated existence of sets and morphisms [18] without showing methods to construct them. The primary concern of modern algebras is not how an operation can be performed, but whether it maps into or onto and the like abstract issues [19–23]. As important as this may be for proofs, the nature does not really care about all that. The PM’s concerns were not constructive, even though theoretically significant. We need thus an approach that is more relevant to operations performed in nature, which never complained about morphisms or the allegedly impossible division by zero, as far as I can tell. Abstract sets and morphisms should be de-emphasized as hardly operational. My decision to come up with a definite way to implement the feared division by zero was not really arbitrary, however. It has removed a hidden paradox from number theory and an obvious absurd from algebraic group theory. It was necessary step for full deployment of constructive, synthetic mathematics (SM) [2,3]. Problems hidden in PM implicitly affect all who use mathematics, even though we may not always be aware of their adverse impact on our thinking. Just take a look at the paradox that emerges from the usual prescription for multiplication of zeros that remained uncontested for some 5000 years 0 0 ¼ 0 ) 0 1=1 ¼ 0 ) 0 1 ¼ 0 1) 1ð? ¼ ?Þ1 ð0aÞ This ‘‘fact’’ was covered up by the infamous prohibition on division by zero [2]. How ingenious. If one is prohibited from dividing by zero one could not obtain this paradox. Yet the prohibition did not really make anything right. It silenced objections to irresponsible reasonings and prevented corrections to the PM’s flamboyant axiomatizations. The prohibition on treating infinity as invertible counterpart to zero did not do any good either. We use infinity in calculus for symbolic calculations of limits [24], for zero is the infinity’s twin [25], and also in projective geometry as well as in geometric mapping of complex numbers. Therein a sphere is cast onto the plane that is tangent to it and its free (opposite) pole in a point at infinity [26–28]. Yet infinity as an inverse to the natural zero removes the whole absurd (0a), for we obtain [2] 0 ¼ 1=1 ) 0 0 ¼ 1=12 > 0 0 ð0bÞ Stereographic projection of complex numbers tacitly contradicted the PM’s prescribed way to multiply zeros, yet it was never openly challenged. The old formula for multiplication of zeros (0a) is valid only as a practical approximation, but it is group-theoretically inadmissible in no-nonsense reasonings. The tiny distinction in formula (0b) makes profound theoretical difference for geometries and consequently also for physical applications. T
https://www.plover.com/misc/CSF/sdarticle.pdf
とても興味深く読みました:
10,000 Year Clock
by Renny Pritikin
Conversation with Paolo Salvagione, lead engineer on the 10,000-year clock project, via e-mail in February 2010.
For an introduction to what we’re talking about here’s a short excerpt from a piece by Michael Chabon, published in 2006 in Details: ….Have you heard of this thing? It is going to be a kind of gigantic mechanical computer, slow, simple and ingenious, marking the hour, the day, the year, the century, the millennium, and the precession of the equinoxes, with a huge orrery to keep track of the immense ticking of the six naked-eye planets on their great orbital mainspring. The Clock of the Long Now will stand sixty feet tall, cost tens of millions of dollars, and when completed its designers and supporters plan to hide it in a cave in the Great Basin National Park in Nevada, a day’s hard walking from anywhere. Oh, and it’s going to run for ten thousand years. But even if the Clock of the Long Now fails to last ten thousand years, even if it breaks down after half or a quarter or a tenth that span, this mad contraption will already have long since fulfilled its purpose. Indeed the Clock may have accomplished its greatest task before it is ever finished, perhaps without ever being built at all. The point of the Clock of the Long Now is not to measure out the passage, into their unknown future, of the race of creatures that built it. The point of the Clock is to revive and restore the whole idea of the Future, to get us thinking about the Future again, to the degree if not in quite the way same way that we used to do, and to reintroduce the notion that we don’t just bequeath the future—though we do, whether we think about it or not. We also, in the very broadest sense of the first person plural pronoun, inherit it.
Renny Pritikin: When we were talking the other day I said that this sounds like a cross between Borges and the vast underground special effects from Forbidden Planet. I imagine you hear lots of comparisons like that…
Paolo Salvagione: (laughs) I can’t say I’ve heard that comparison. A childhood friend once referred to the project as a cross between Tinguely and Fabergé. When talking about the clock, with people, there’s that divide-by-zero moment (in the early days of computers to divide by zero was a sure way to crash the computer) and I can understand why. Where does one place, in one’s memory, such a thing, such a concept? After the pause, one could liken it to a reboot, the questions just start streaming out.
RP: OK so I think the word for that is nonplussed. Which the thesaurus matches with flummoxed, bewildered, at a loss. So the question is why even (I assume) fairly sophisticated people like your friends react like that. Is it the physical scale of the plan, or the notion of thinking 10,000 years into the future—more than the length of human history?
PS: I’d say it’s all three and more. I continue to be amazed by the specificity of the questions asked. Anthropologists ask a completely different set of questions than say, a mechanical engineer or a hedge fund manager. Our disciplines tie us to our perspectives. More than once, a seemingly innocent question has made an impact on the design of the clock. It’s not that we didn’t know the answer, sometimes we did, it’s that we hadn’t thought about it from the perspective of the person asking the question. Back to your question. I think when sophisticated people, like you, thread this concept through their own personal narrative it tickles them. Keeping in mind some people hate to be tickled.
RP: Can you give an example of a question that redirected the plan? That’s really so interesting, that all you brainiacs slaving away on this project and some amateur blithely pinpoints a problem or inconsistency or insight that spins it off in a different direction. It’s like the butterfly effect.
PS: Recently a climatologist pointed out that our equation of time cam, (photo by Rolfe Horn) (a cam is a type of gear: link) a device that tracks the difference between solar noon and mundane noon as well as the precession of the equinoxes, did not account for the redistribution of water away from the earth’s poles. The equation-of-time cam is arguably one of the most aesthetically pleasing parts of the clock. It also happens to be one that is fairly easy to explain. It visually demonstrates two extremes. If you slice it, like a loaf of bread, into 10,000 slices each slice would represent a year. The outside edge of the slice, let’s call it the crust, represents any point in that year, 365 points, 365 days. You could, given the right amount of magnification, divide it into hours, minutes, even seconds. Stepping back and looking at the unsliced cam the bottom is the year 2000 and the top is the year 12000. The twist that you see is the precession of the equinoxes. Now here’s the fun part, there’s a slight taper to the twist, that’s the slowing of the earth on its axis. As the ice at the poles melts we have a redistribution of water, we’re all becoming part of the “slow earth” movement.
RP: Are you familiar with Charles Ray’s early work in which you saw a plate on a table, or an object on the wall, and they looked stable, but were actually spinning incredibly slowly, or incredibly fast, and you couldn’t tell in either case? Or, more to the point, Tim Hawkinson’s early works in which he had rows of clockwork gears that turned very very fast, and then down the line, slower and slower, until at the end it approached the slowness that you’re dealing with?
PS: The spinning pieces by Ray touches on something we’re trying to avoid. We want you to know just how fast or just how slow the various parts are moving. The beauty of the Ray piece is that you can’t tell, fast, slow, stationary, they all look the same. I’m not familiar with the Hawkinson clockwork piece. I’ve see the clock pieces where he hides the mechanism and uses unlikely objects as the hands, such as the brass clasp on the back of a manila envelope or the tab of a coke can.
RP: Spin Sink (1 Rev./100 Years) (1995), in contrast, is a 24-foot-long row of interlocking gears, the smallest of which is driven by a whirring toy motor that in turn drives each consecutively larger and more slowly turning gear up to the largest of all, which rotates approximately once every one hundred years.
PS: I don’t know how I missed it, it’s gorgeous. Linking the speed that we can barely see with one that we rarely have the patience to wait for.
RP: : So you say you’ve opted for the clock’s time scale to be transparent. How will the clock communicate how fast it’s going?
PS: By placing the clock in a mountain we have a reference to long time. The stratigraphy provides us with the slowest metric. The clock is a middle point between millennia and seconds. Looking back 10,000 years we find the beginnings of civilization. Looking at an earthenware vessel from that era we imagine its use, the contents, the craftsman. The images painted or inscribed on the outside provide some insight into the lives and the languages of the distant past. Often these interpretations are flawed, biased or over-reaching. What I’m most enchanted by is that we continue to construct possible pasts around these objects, that our curiosity is overwhelming. We line up to see the treasures of Tut, or the remains of frozen ancestors. With the clock we are asking you to create possible futures, long futures, and with them the narratives that made them happen.
https://openspace.sfmoma.org/2010/02/10000-year-clock/
再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
天才ガウスは生存中に既に数学界の権威者として高い評価と名声を得ていた。ところが、2000年の伝統を有するユークリッド幾何学とは違った世界、非ユークリッド幾何学を発見して密かに研究を進めていた。この事実を繰り返し気にしてきたが、ガウスは結果を公表すると 世情か混乱するのを畏れて公表をためらい、密かに研究を続けていた。ガウスの予想のように、独立に非ユークリッド幾何学を発見、研究を行って公表した、数学者ロバチェスキー と若きヤーノス・ボヤイは 当時の学界から強い批判を受けてしまった。
ガウスの心境は、十分にやることがあって、名声も十分得ている、ここで騒ぎを起こすより、研究を進めた方が楽しく、また将来に遺産を沢山生産できると考えたのではないだろうか。現在の状況より、歴史上に存在する自分の姿の方に 重きが移っていたのではないだろうか。
このような心理、心境は研究者や芸術家に普遍的に存在する未来に生きる姿とも言える。いろいろな ちやほや活動、形式的な活動よりは 真智への愛に殉じて、余計なことに心を乱され、時間を失うのを嫌い ひたすらに研究活動に励み、仕事の大成に心がける、未来に生きる姿といえる。
しかしながら、この未来に生きるは 実は当たり前で、生物の本能であることが分る。世に自分よりは子供が大事は 切ない生物の本能である。短い自己の時間より、より永い未来を有する子供に夢を託して、夢と希望を抱いて生きるは 生物の本能の基本である。生物は未来、未来と向かっているとも言える。
そこで、ゼロ除算が拓いた新しい世界観に触れて置きたい。未来、未来と志向した先には何が有るだろうか。永遠の先が 実は存在していた。それは、実は始めに飛んでいた。
そこから物語を始めれば、実はまた 現在に戻り、未来も過去も同じような存在であると言える。- これは、現在は未来のために在るのではなく、未来も現在も同じようなものであることを示している。
現在は 過去と未来の固有な、調和ある存在こそが大事である。将来のためではなく、現在は現在で大事であり、現在を良く生きることこそ 大事である。ガウスについていえば、ちょうどよく上手く生きたと評価されるだろう。- ただ人生を掛けて非ユークリッド幾何学にかけた若き数学者の研究を励まさず、若き数学者を失望させたことは 誠に残念な偉大なる数学者の汚点であることを指摘しなければならない。
以 上
再生核研究所声明 396(17.11.13): 人間の終末の心 - 人生も人間も大した存在ではない
人間の終末の心の状態を顧みて置こう。
西行の終末、西行花伝 ― 辻邦生、新潮社 に現れた状況は 詠んだ和歌の選の結果が楽しみで 伊勢神宮に献じるのを最大の楽しみにしていた様子が良く伺える。
これは どこかで映像で見た平家の公達が都落ちに 和歌を残したいと立ち寄ったシーンが 深く心に残っている それと同様の心境と解せる。これらに共通する心は 多くの研究者、芸術家に共通する 生きた記念碑を後世に残したい という心情で相当人間の本質を表していると考えられる。
信長の場合には、もうすぐ天下を取れるとみられる 最も充実していた折りに、突然の事件で 数時間で最後に追い詰められた いわば無念の思いの最後である。これは世に多く見られる現象であるので、一応の心構えとして 日頃努めるべきである。修業とはそのような心構えをすることではないだろうか。― 明日ありと 思う心の 仇桜 夜半に嵐の  吹かぬものかは(親鸞)。
それに対して、秀吉は 相当に満足できる人生を送ったが、最後の心境には 一族の将来不安が有ったとみられる。上手く人生を歩んだ人の 一般的な心境ではないだろうか。
大石内蔵助達の最後は 義を貫き、志を遂げての最後で 爽やかであり、強い信念で生きたものの迷いのない最後とも言える。意外に戦場における 兵士達の最後の心境も同様ではないだろうか。国家や部隊と命運を共にして殉ずる精神で 結構普遍的にみられる心境ではないだろうか。- 追い詰められれば結局 大義に殉じざるを得ないし、我々の精神はそのように 作られていると言える。
人間は、本能的にも事実としても、人生はゼロから始まってゼロに終わることを知っていて、所詮はかない存在であることを知っている。しかしながら、なかなかゼロに帰することを受け入れられず、生物的な生命の延長と少しばかりは ちやほやされたい、褒められたいなどのいじらしい心を有しているのでは ないだろうか。― ここで、 ゼロに帰するは 全体を支えている大きなものの存在を否定して訳ではないことに注意して置きたい。
これ男子の本懐なり、板垣死すとも自由は死せず とか ソクラテスが、悪法もまた法なりといって毒杯をあおったのも その辺を周知のうえでの 肯定の終末といえる。
そう考えると、人間そうは 大した存在ではなく、人生もまた同様であると言える。
以 上
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
No.81, May 2012(pdf 432kb) - International Society for Mathematical ...
www.jams.or.jp/kaiho/kaiho-81.pdf
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れた。少し、違った観点から、数学の本質論と社会への影響について述べたい。
数学とは関係の集まりであるが、時間にもエネルギーにもよらない数学の論理の神秘性から、神学のような性格を帯びていて、およそ世に絶対的という概念が有ればそれは数学くらいで 特別に尊い存在であると考えられてきた。ところが非ユークリッド幾何学の出現で、数学についての考えは本質的に変えられ、数学とは ある仮定系、公理系から論理的に導かれた関係の総体が その公理系から導かれた一つの数学で、数学自身は絶対的な真理や世の価値とは無関係な存在であるという認識に改められた。数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ価値がないものであるとも言える。― 近年 異常な評価時代に、論文、著書など、引用情報やダウンロード数などが重視される世相を作っている。現在は表面的なデータによる行き過ぎとしても、将来は相当に裏付けの伴う評価に発展して、評価は人工知能が活躍する分野に成るのではないだろうか。
この観点は、2014.2.2に発見されたゼロ除算とゼロ除算算法の研究姿勢に大きなヒントを与えてくれる。そもそもゼロ除算は1000年以上も不可能であり、考えてはいけない が 数学界の定説であった。それが全然予想もされなかった結果であったと報告されても、全く新しい数学で、世の常識と違うわけであるから、始めは、興味も、関心も抱かないのは当然とも言える。気づいてみれば、ゼロ除算は本質的には定義であり、仮定とも言えるので、上記数学の観点からは、新しい数学とも言える。そこで、ゼロ除算の世界を広く社会に紹介するために初等数学全般に亘ってゼロ除算の影響を調べてみることにした。新しい数学がどのような意義を有するかを問題にした。
誠に皮肉なことには、ゼロ除算の、ゼロ除算算法の直接の影響として、ユークリッド、アリストテレスの世界観を変える、結果を導くことである。始めから重大な問題を提起してきた。すなわち、無限遠点はゼロで表される、すべての直線には原点を加えて考えるべきである。― 異なる平行線は原点を共有するとなって、 ユークリッドの平行線の公理に反し、世の連続性に対するアリストテレスの世界観にも反することになる。さらに、円の中心の円に関する鏡像は無限遠点でなく、円の中心自身であるとなって、古典的な結果に反することになる。驚嘆すべきことに、x、y直交座標系で y軸の勾配は ゼロであるという結果をもたらす。すなわち、 \tan(\pi/2) =0 である。
それで、初等数学全般に大きな影響が出ることが明かになった。
大事な論理的な原理は、新しい定義、仮定からゼロ除算は展開されるので、得られた結果、導かれた結果については吟味を行い、結果について評価する態度が大事である。ところが考えてみれば、数学そのものが実はそうであった。数学も、得られた結果がどのような意味が、自分の好みを越えて価値があるか否かを絶えず吟味していきたい。吟味して行かなければならない。
以 上
再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
ここ一連の声明で数学について述べてきた:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
No.81, May 2012(pdf 432kb) - International Society for Mathematical ...
www.jams.or.jp/kaiho/kaiho-81.pdf
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れ、違った観点から、数学の本質論と社会への影響について述べた。さらに
数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、逆に、未来人が高い評価を与える場合もある。
そこで自然な考えが突然浮かんだ:
2017.11.13.10:45 突然、この流れで考えが湧いた。数学を芸術として楽しもうという新しい分野の創造の提案である。
数学は抽象的な理論、文章や式で表される場合が多く、社会の一般の方の理解が難しい不幸な状況にある。数理に興味を抱く多くの人々を遠ざけ、数理に喜びや楽しみがあるのに、スポーツやドラマ、芸術、文学などに比べて民衆の享受に寄与していないのは、数理の美しい世界の存在に比べて誠に残念な状況であると危惧される。― 数理の話題、ニュース、情報の極端に少ない現状からそう判断せざるを得ないのではないだろうか。数理科学を楽しみ、数理の世界の社会貢献、裾野の広がりを求めて、数学芸術 分野の創造と発展を提案したい。少し、具体的に触れるが いろいろな衆知を集めて構想そのものの進化を期待したい。
数学芸術は 数学の内容を、絵画やその他の手段で簡明な表現を求め、音楽や絵画が感動を呼び起すように 美しい表現を追求していく。
数理科学の社会的文化的基盤を拡充、充実発展させ、数理科学を芸術のように楽しみ、かつ 真智への愛 を育てる。
以 上
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
人間生きて居れば楽しいとき、苦しいとき、感情の起伏は避けられない。人間の感情は絶えず揺れ動くものである。数学の研究におけるそのような感情の起伏を回想しながら纏めてみたい。
研究の初期であるが、何を研究するか、研究課題の選択は非常に難しく一般には研究生活における苦しい時期ではないだろうか。もちろん好きだから数学を専攻したのだから、学んでいるときには新しい世界がどんどん広がって、楽しいが、新しい結果を得るには一般には容易なことでないと言える。広く深い現代数学において研究課題の選択は研究者の将来を相当に定めることになる。一般には好きな分野での好きな指導教授の数学の範囲での選択に成る。そこで、何か新しいことを発見、解決して、論文を出版することが大事な目標になる。論文を出版する事は博士号の取得や研究職に付くための条件に成るから、何が何でも論文を書くが 直接の目標になる。この時、手っ取り早い方法は提起されている問題を解決したり、読んだ論文の内容の一般化、精密化、類似の理論の展開などであるが、それらとて甘くはなく、いずれもそれぞれの専門家が出来なかったこと、気づかないことの発見、新規な展開だから、研究は厳しく、研究の初期は誠に厳しいものであると考えられる。- 数学を志す者にはいわば優秀な人が多く、難なくここを踏破していく者も多い。しかし、簡単に踏破していくような人は行き詰る場合も多く、苦労して研究課題を自分に合ったように選択した者は、最初は遅れても永く研究が続く面もあるようである。- この観点からは、早期の成果を期待し過ぎの風潮は問題があるのではないだろうか。何事初期の取り組みが大事なようである。専門化、高度化の厳しい現代数学、簡単には研究課題は変えられず、生涯の研究の方向は 多くは初期で決まっている現実があると考えられる。― これは何でも飛び越えていくような天才的な人を想定しているのではなく、一般的な数学者を想定している。
1つの研究課題で論文が連続的に書けるような時代に入れば、充実した研究生活で、創造活動ができる輝ける時代を歩めるのではないだろうか。新しい考えが湧いたとき、思わぬことを発見したとき、またそのような予感がする時は 研究者の充実しているときであると言える。良い考えが湧いたときなど、眩暈がするほどの喜びが湧き、それは苦しいほどであると表現できる。発見の瞬間、得た結果の評価に対する共感、共鳴は人間の最高の喜びの類に入るだろう。評価が違って共感が得られなかったり、論文執筆上の形式的な気遣いは研究生活における影の部分に成るが、それが研究の芽に成るので、苦しみも喜びの内と考えるべきである。研究課題の行き詰まりもそうである。行き詰るから新しい芽が出てくるのである。苦しみと喜びは絶えず変化し、喜びも苦しみも区別がつかず、その活動が研究生活と言える。
若い研究者の博士号取得、就職、そしてパーマネントの研究職に付くまでの厳しさは回想しても苦しい、修業時代と言える。しかしそれらが、生涯の研究の基礎に成る。
所謂論文投稿から採否決定までの間、永さは 研究者にとっては一般に苦しい状態ではないだろうか。研究成果を評価に活かせないからである。その点、インターネットの普及で論文原稿をアーカイブなどで公開できるシステムには 格段の進歩と高く評価される。- 英文書き換え要求に対して 多くは1週間かけて 進んだIBM 修正機能付きの電子タイプライターで書き替え、原稿の送付と返事にさらに2週間掛ったが、現在は、修正は分単位、何回でも書き換えができて、連絡は1日で十分である。素晴しい時代を迎えていると言える。
研究者の嫌なこととは集中している折り、いろいろ雑用が入ることではないだろうか。一心不乱に研究に専念しているとき、それを乱されるとき、本能的に嫌がるのは自然な心で、心此処にあらずの状況は良き家庭人や良き親であることの余裕を失わせ、いろいろ良からぬ家庭問題や対人関係を作りかねないと憂慮される。大学の法人化後の日本の大学の多くが研究者の大事な自由な時間と余裕を失なわしめ、逆に雑用を多くして、研究者を虐待しているように感じられる。5年間ポルトガルの大学から研究員として招待され、研究に専念できたが、過ごした経験から、あまりにも大きな違いを感じて 唖然としている。
それから、数学の研究成果の発表では 間違いをおかしてはならないことは 相当に厳しい原則であるから、投稿したら、間違いがあった、出版済みの論文に間違いを発見した等の場合には、相当ショックで、相当に苦しい心理状況に追い込まれる。研究上の相当な時間は 繰り返し不備はないか、間違いはないかの省察の時間ではないだろうか。絶えず、大丈夫か、大丈夫か、間違いはないか、間違いはないかと自問していると言える。もちろん、理論の全体の在り様に対する想いは、真智への愛 である。
以 上
2017.11.14.14:57
2017.11.14.16:35
2017.11.14.19:35
2017.11.15.05:37 星座の美しい朝。
2017.11.15.08:10
2017.11.15.15:45
2017.11.15.22:14
2017.11.16.06:00 晴天、昨夜 夕立、雷あり。
2017,11.16.10:40
2017.11.16.14:14 美しい日、山間部を散歩してくる、紅葉進む。
2017.11.16.19:28
2017.11.17.06:02 美しい星空 大沢先生と前出さんからメール。
2017.11.17.06:14 完成、公表。
再生核研究所声明 401(2017.11.18):  数学の全体、姿、生命力
ここ一連の声明で数学について述べてきた:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
数学、数学の本質論については 次で相当深く触れた:
No.81, May 2012(pdf 432kb) - International Society for Mathematical ...
www.jams.or.jp/kaiho/kaiho-81.pdf
また数学の社会性の観点からは、
再生核研究所声明 392(2017.11.2):  数学者の世界外からみた数学  ― 数学界の在り様について 
で触れ、違った観点から、数学の本質論と社会への影響について述べた。さらに
数学とは基本的に、ある仮定の下に導かれる全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになるが、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、逆に、未来人が高い評価を与える場合もある。
この文脈で数学の全体と生命力について言及して置きたい。数学とは、時間にもエネルギーにもよらない関係の全体であるから、数学的な論理思考を備えた高度な人工知能が自動的に数学を発展させていく可能性を否定できない。初歩的な数学では、実際、そのような試みがなされているという。人間を離れた、数学の全体像はどのようになるだろうか。基本的な仮説の上に何でも考えて、- これはいろいろな場合に当たって 何でも試行していく方法がとられるだろう。- しかしながら、人工知能が新しい概念や、定義を与えられるかは本質的な問題ではないだろうか。このような思いで数学の全体像を想像すると、基本的な仮定からどんどんいろいろな関係を導き、それは大樹のような姿に成るのではないだろうか。数学の客観的な存在はそのようであると考えられる。
ところが現在数学は人が展開して、発展させている状況から、数学の発展は 人間によるという現実がある。数学の客観的な在りように人間が関与してくる。そこで、関与する人間の興味と関心でどんどん進む状況と他からの要請でどんどん進む方向が存在する。後者は位置づけが明瞭であるが、前者の純粋数学の発展の様は大いに注目される。共通的な興味、関心で研究者の多い分野が存在し、いわゆる権威ある者の影響で門下生が多く、深く研究が進む状況は良くみられる。有名な難問に挑戦する相当な研究者集団も顕著である。数学にもブームや流行が有って、ある時期、相当に流行って研究会などで大きな話題になった話題が20年や30年くらい経つと関与する研究者が殆どいなくなってしまう状況がみられる。
それで、数学が大きな生命力をもって発展する華やかな時代と、細分化が進み、他との関係、他に影響や関心を与えない程になって、衰退していく、いわば大木では幹の部分から小さな枝や葉の部分になって数学は終末を迎えるのではないだろうか。数学は時間やエネルギーにもよらない不変なものであるが 数学の担い手である、人間に関与していて、人間が命ある生命であるように 数学も人間の影響を受けていると考えられる。
その意味で純粋数学者は、現在の 数学の位置づけ と 自分の心 をしっかりと捉えることが大事ではないだろうか。
以 上
2017.11.16.14:42
2017.11.16.19:34
2017.11.17.06:10 美しい星空。 良い。
2017.11.17.16:11
2017.11.17.21:46
2017.11.18.05:55
2017.11.18.06:01 曇り、完成、公表。
再生核研究所声明 402(2017.11.19): 研究進めるべきか否か - 数学の発展
ここ一連の声明で数学について述べてきた:
再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
再生核研究所声明 401(2017.11.18): 数学の全体、姿、生命力
数学の本質論については 次で相当深く触れた:
No.81, May 2012(pdf 432kb) - International Society for Mathematical ...
www.jams.or.jp/kaiho/kaiho-81.pdf
ここでは、現実の問題から、研究姿勢、路線について具体的に考察したい。
数学とは基本的に、ある仮定の下に導かれる関係の全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになる. しかし、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、未来人が高い評価を与える場合もある。また、
デカルトの円定理:
定理は3つの外接する円に対して、それらに内接する円と外接する円の半径を、3つの円の半径で表わす公式を与えたものであるが、その公式は美しい形を有している。ところで、円の半径がゼロならば、点円、半径が無限大ならば、直線になると考えられる。後者の解釈については、ゼロ除算算法の導入で、直線とは中心が原点、半径ゼロの円と見なせるという知見をもたらした。点も直線も円の1種であるという考えから、それではデカルトの美しい定理で、円を直線や点の場合にも成り立つかと考えた。ゼロ除算算法で、2つが円で1つが点以外は、そのまま成り立つことが確認され、この例外である場合に、驚嘆すべきことが分った。3つの円が接しているとき、デカルトの定理は成り立っている。そこで、1つを点に近づけ、点に成ったときにデカルトの定理がどうなるかを調べた。点のときは内接円も外接円も存在しないから、デカルトの定理は成り立たないと考えられる。ところが、点に成ったとき、ゼロ除算算法で解析すると、その点は3つの場合に突然、変化する現象が現れた。点以外に、美しい円が2つ現れる。これらの円について、デカルトの定理を成り立たせる解釈が存在することが分った。― 点が変化して、変化した円で、デカルトの定理が成り立っている。専門家 奥村博博士と論文を執筆中である(2017.11.5.6.57)。この予稿版は2017.11.14に公刊された:https://arxiv.org/abs/1711.04961
そこで、次の研究課題として、如何に進めるべきかを考えている。当面研究課題が無い場合には、課題を探すことになる。しかし今回の場合には、次々と研究課題が存在することが分る。まずは、デカルトの円定理、外接する3つの円が、2つ交わった場合、3つ交わった場合どうなるかの問題が存在する。さらに、今回考えたように、その円の幾つかが、点や直線になった場合にはどうなるかの問題がある。それらの研究内容は今回の論文の6倍から、12倍以上の内容が存在することが予想される。数学の常道である多次元化を考えれば、それらはそれらの研究課題は20倍を超える世界で、挑戦すれば、1冊の著書と生涯の仕事に成り得ると考えられる。そこで如何に進むべきかと思案することになる。論文を出版する事が要求されている場合など、特に他に挑戦する課題が無い場合には、とりあえず、それらの大きな計画の最初の2,3歩を歩み出したいと考えるだろう。より良い課題を持っていれば、その課題に当面挑戦したいと成るだろう。その時の価値判断は 純粋な個人の思いと社会的な影響や共同研究者の意見、希望等が影響するものと考えられる。純粋な個人の価値判断と対社会的な反響に影響されることになる。このとき、その個人の数学観、人生観、価値観などが影響を与え、そのような経緯がその個人の数学を発展させていく原理になる。
今回の場合には、ユークリッド幾何学の世界は、やれば何でもできるので もはや興味も、関心もないという考えが基礎にあるが、全く新奇な現象が出ると分かれば、新規な現象になれるまでは、研究を続行したくなるだろう。人間の心とは極めて微妙で やればできるとなれば、大きな魅力は失われ、予想できない難しい分野に心が向く、真智への愛 が目覚めてくる。創造とは何か、生命とは何か、人工知能の発展とともに絶えず問われることになるだろう。人間にとって真に価値あるものとは何か。人間はどのようなものに感動を覚えるか。絶えず問うていくことになる。
                                       以 上
2017.11.18.10:30 曇りの日。
2017.11.18:15:16 スマテク点検に見える。エコ眼鏡故障の様子が不明、曇り。
2017.11.18.19:25
2017.11.18.21:50 曇りの日、夜風が出て、星空が広がる。
2017.11.19.04:50 満天の美しい星空。良い、完成できる。
2017.11.19.05:26 完成、公表。

0 件のコメント:

コメントを投稿