再生核研究所声明 402(2017.11.19): 研究進めるべきか否か - 数学の発展
ここ一連の声明で数学について述べてきた:
再生核研究所声明 397(2017.11.14): 未来に生きる - 生物の本能
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
再生核研究所声明 401(2017.11.18): 数学の全体、姿、生命力
数学の本質論については 次で相当深く触れた:
ここでは、現実の問題から、研究姿勢、路線について具体的に考察したい。
数学とは基本的に、ある仮定の下に導かれる関係の全体である。関与する数学者にとっては、その体系に魅せられ関係を追求していくことになる. しかし、他の人にとっては、あるいは社会的には、それらがどのような意味、影響を与えてくれるかが 人が興味、関心を抱くか否かが大事な問題であると言える。他からみれば、興味、関心、影響を与えないようなものは 存在していないようなものであるから、それだけ人にとっては価値がないものであるとも言える。― もちろん、未来人が高い評価を与える場合もある。また、
デカルトの円定理:
定理は3つの外接する円に対して、それらに内接する円と外接する円の半径を、3つの円の半径で表わす公式を与えたものであるが、その公式は美しい形を有している。ところで、円の半径がゼロならば、点円、半径が無限大ならば、直線になると考えられる。後者の解釈については、ゼロ除算算法の導入で、直線とは中心が原点、半径ゼロの円と見なせるという知見をもたらした。点も直線も円の1種であるという考えから、それではデカルトの美しい定理で、円を直線や点の場合にも成り立つかと考えた。ゼロ除算算法で、2つが円で1つが点以外は、そのまま成り立つことが確認され、この例外である場合に、驚嘆すべきことが分った。3つの円が接しているとき、デカルトの定理は成り立っている。そこで、1つを点に近づけ、点に成ったときにデカルトの定理がどうなるかを調べた。点のときは内接円も外接円も存在しないから、デカルトの定理は成り立たないと考えられる。ところが、点に成ったとき、ゼロ除算算法で解析すると、その点は3つの場合に突然、変化する現象が現れた。点以外に、美しい円が2つ現れる。これらの円について、デカルトの定理を成り立たせる解釈が存在することが分った。― 点が変化して、変化した円で、デカルトの定理が成り立っている。専門家 奥村博博士と論文を執筆中である(2017.11.5.6.57)。この予稿版は2017.11.14に公刊された:https://arxiv.org/abs/1711.04961
そこで、次の研究課題として、如何に進めるべきかを考えている。当面研究課題が無い場合には、課題を探すことになる。しかし今回の場合には、次々と研究課題が存在することが分る。まずは、デカルトの円定理、外接する3つの円が、2つ交わった場合、3つ交わった場合どうなるかの問題が存在する。さらに、今回考えたように、その円の幾つかが、点や直線になった場合にはどうなるかの問題がある。それらの研究内容は今回の論文の6倍から、12倍以上の内容が存在することが予想される。数学の常道である多次元化を考えれば、それらはそれらの研究課題は20倍を超える世界で、挑戦すれば、1冊の著書と生涯の仕事に成り得ると考えられる。そこで如何に進むべきかと思案することになる。論文を出版する事が要求されている場合など、特に他に挑戦する課題が無い場合には、とりあえず、それらの大きな計画の最初の2,3歩を歩み出したいと考えるだろう。より良い課題を持っていれば、その課題に当面挑戦したいと成るだろう。その時の価値判断は 純粋な個人の思いと社会的な影響や共同研究者の意見、希望等が影響するものと考えられる。純粋な個人の価値判断と対社会的な反響に影響されることになる。このとき、その個人の数学観、人生観、価値観などが影響を与え、そのような経緯がその個人の数学を発展させていく原理になる。
今回の場合には、ユークリッド幾何学の世界は、やれば何でもできるので もはや興味も、関心もないという考えが基礎にあるが、全く新奇な現象が出ると分かれば、新規な現象になれるまでは、研究を続行したくなるだろう。人間の心とは極めて微妙で やればできるとなれば、大きな魅力は失われ、予想できない難しい分野に心が向く、真智への愛 が目覚めてくる。創造とは何か、生命とは何か、人工知能の発展とともに絶えず問われることになるだろう。人間にとって真に価値あるものとは何か。人間はどのようなものに感動を覚えるか。絶えず問うていくことになる。
以 上
2017.11.18.10:30 曇りの日。
2017.11.18:15:16 スマテク点検に見える。エコ眼鏡故障の様子が不明、曇り。
2017.11.18.19:25
2017.11.18.21:50 曇りの日、夜風が出て、星空が広がる。
2017.11.19.04:50 満天の美しい星空。良い、完成できる。
2017.11.19.05:26 完成、公表。
0 件のコメント:
コメントを投稿