Posts Tagged 'dividir por cero'
Otra persona empeñada en dividir por 0…
Published 14/09/2012 Aut.: M. Macho , Humor , Matemáticas 1 Comment
Etiquetas: Chuck Norris, dividir por cero, Do the math, Solo Chuck Norris puede dividir por cero
Etiquetas: Chuck Norris, dividir por cero, Do the math, Solo Chuck Norris puede dividir por cero
Se trata de una política de Hawai… en un video publicitario, titulado -sorprendentemente- Do the math.
¿No se ha enterado de que Sólo Chuck Norris puede dividir por cero?
Visto en Math Fail
¿Es Windows 7 como Chuck Norris?
Published 30/08/2012 Aut.: M. Macho , Cine , Humor , Matemáticas 2 Comments
Etiquetas: calculadora, cero, Chuck Norris, dividir por cero, habilidades matemáticas, No se puede dividir entre cero, Windows 7
Etiquetas: calculadora, cero, Chuck Norris, dividir por cero, habilidades matemáticas, No se puede dividir entre cero, Windows 7
Esto viene a cuento de que Sólo Chuck Norris puede dividir por cero… Pero ¿y este video titulado Windows 7 can Divide By 0?
He hecho la prueba y, efectivamente, al usar la calculadora del ordenador con Windows 7 e intentar dividir cualquier cantidad por 0, sale el mensaje “No se puede dividir entre cero“.
とても興味深く読みました
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:5年 ゼロ除算の発見と重要性をした:再生核研究所 2014年2月2日
再生核研究所声明 470 (2019.2.2) ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 発見5周年を迎えて
ゼロ除算100/0=0の発見は 初期から ゼロ除算の発見時から、 歴史的なものと考えて、詳しい過程を記録してきたが、ゼロ除算の影響は 初等数学全般に及び、 天動説が地動説に代わるような世界観の変更を要求している。 言わば新しい世界を拓く契機を与えるだろう。世界史は大きく動き、新しい時代を迎えられるだろう。― これは我々の世界の見方が変化すること、心の在りようが 変化することを意味する。 しかるに 発見5周年を迎えても その大きな影響を理解しない世情は、人類の歴史に 汚点を刻むことになるだろう。 数学の論理は 絶対的であり、数学の進化も 大局的には必然的なものである
(再生核研究所声明 467 (2019.1.3): 数学の素晴らしさ ー 数学は絶対的な世界である)。
一数学者として このようなことは、真智を求める者として、愛する者として、研究者の良心にかけて、 断言せざるを得ない。 また表現は、応援者たち、理解者たち、関係者たちが 相当に言わば晩年を迎えている実状を鑑みて、率直にならざるを得ない。実際、我々は明日の存在を期待してはならない状況にある:
再生核研究所声明 465 (2019.1.1): 年頭にあたって - 1年の計
(部分引用: 年齢的に X,Y,Zの場面が いつ起きても不思議ではない状況にあることを しっかりと捉える必要がある。
まず、X とは入院などでメールができない状況である。Yとは、意志表示ができない状況である。Zとは、意識が無い状況である。 したがって、いかなる場合にも平然と、それらに対応できる心構えを整えることを 修行として、心がけることが 大事である。
まず、X とは入院などでメールができない状況である。Yとは、意志表示ができない状況である。Zとは、意識が無い状況である。 したがって、いかなる場合にも平然と、それらに対応できる心構えを整えることを 修行として、心がけることが 大事である。
その原理は、それらに際して、後悔しないように準備に励ことである。それ故に、存念を率直にブログ、Facebook、 論文、声明などで表現して これまでとして、何時でも終末を迎えられるように すべきである。
― 上記メールができることであるが、著名な数学者の言葉であったと思うが、我れ思うゆえに我あり、我れメールするがゆえに、我れ存在すると多くの人は理解するだろう。
実際、多くの人にとっては、情報を得ることで、その人の存在を認識するだろう。交流できることが 生きている意味と捉えられるだろう。
そのような 終末を迎える原理として、 ゼロ除算の帰結である 生命のグラフ、 すなわち 多くの過程は 初めに戻る との教えは 大きく貢献するだろう。)
― 上記メールができることであるが、著名な数学者の言葉であったと思うが、我れ思うゆえに我あり、我れメールするがゆえに、我れ存在すると多くの人は理解するだろう。
実際、多くの人にとっては、情報を得ることで、その人の存在を認識するだろう。交流できることが 生きている意味と捉えられるだろう。
そのような 終末を迎える原理として、 ゼロ除算の帰結である 生命のグラフ、 すなわち 多くの過程は 初めに戻る との教えは 大きく貢献するだろう。)
世にゼロで割ってはいけない、ゼロ除算は不可能であるや不定であるという常識は、全くの狭い見方、考え方、発想で、自然な意味でそれらは可能で、できないといって避けていたゼロ除算から、実は誰も考えたことのない世界が現れ、それが初等数学全般に及ぶことが
900件を超える知見で明らかにされてきた。
要点は、解析関数を考えるときに、特異点そのものでは考えず、特異点を除いた部分で関数を考えて来たのに、実は孤立特異点そのもので、解析関数は、有限確定値を取ることが 分かったことである。― 例えば、解析関数 W= exp (1/z) は 原点z=0 でピカールの除外値1を取っている(ゼロ除算算法)。― 何と、この関数は原点の近くで、ただ一つの例外の数を除いて、すべての複素数値を無限回取るとされてきたが、その例外値が実は、特異点で取られていた。 その意味で、全く新しい数学が発見されたという事実である。 その影響は900件を超える知見を齎し、初等数学全般に大きな影響を与える。既に確立しているホーン・トーラスという、アリストテレス、ユークリッド以来の リーマン球面に代わる空間が発見された。我々の結果は そのように自然な分数の意味で、1/0=0/0=\tan(\pi/2)=0 と表現されるが、その影響は 世界観の変更に及び、現在の世界は、ゼロ除算の新しい世界から見ると、未だ夜明け前と表現される。現在全体の様子を著書に纏め中である。
少し具体的に内容について触れて置く:
まず代数学的にはゼロ除算を含む簡単な体の構造(山田体)が与えられているが、このことの認識が抜けているのは 代数学における 相当に基本的な欠陥 であると考えられる。体の構造はあまりにも基本的であるということである。
幾何学においては無限遠点がゼロで表されることから、無限遠点が関与する幾何学、平行線、直線、円、三角形、2次曲線論など広範な幾何学に欠陥が存在する。曲率、勾配などの概念の修正が求められる。我々の空間の認識は 数学的にはユークリッド以来 不適当である と言える。図形の式による孤立特異点を含む表現で、孤立特異点でゼロ除算算法を用いると いろいろ面白い図形や、量が現れて、新規な世界が現れてくる。無限、特異点として考えて来なかった世界における新しい現象が現れてきた。これは未知の広大な世界である。
解析学では、いわゆる孤立特異点では、そこでは一切考えて来なかったが、孤立特異点そこで、ローラン展開は ゼロ除算算法として意味のある世界が拓かれているので、全く新しい数学を展開することが可能である。直接大きな影響を受けるのは微分方程式の分野で ゼロ除算算法の視点から見ると、 微分方程式論は 相当に欠陥に満ちていると言える。典型的な結果はtan(\pi/2)=0である。微分係数がプラス、あるいはマイナス無限大と考えられてきたところが 実はゼロで、微分方程式論に本質的な影響を与える。特異点でも微分方程式を満たすという概念が生まれた。
複素解析学ではゼロ除算算法の応用、影響の大きさから、そのように重要なゼロ除算算法の意義の解明が望まれる。様々な解析関数の孤立特異点の値は数学辞典、公式集の新たな章になるだろう。三角関数など初等関数については既に相当な結果が得られている。未知の世界である、孤立特異点での関数の性質を研究する、新世界における問題が広がっている。
一般的な視点からの要点とは、まず、我々はゼロで割れることを、厳密な意味で与えて、言明し、その広範な影響が出てきたこと。それと裏腹に ゼロと無限の関係を明らかにして、永い懸案のそれらの概念を明らかにして、それらの関係が確立されたことである。特に この基本的な関係は リーマン球面に代わるモデルとして、ホーン・トーラスとして 幾何学的に明示される。― それで、無限とゼロの意味とそれらの関係が分かったと言える。最近物理学者も興味を寄せてきているが、ホーン・トーラス上の数学は、今後の課題である。
ゼロ除算算法とは 強力な不連続性を伴った 仮説であり、仮定である(数学そのものがそのような構造をしている)が、 ゼロ除算そのものの意味は依然不明であり、その意味の追求は ブラックホールの解明のようにゼロ除算算法の研究を行うことで、意味を追求していくことになる。その本質は、どうして そのように強力な不連続性が与えられているか、無限とゼロの関係を追及していくことである。もちろん、universe の現象として捉えていく必要がある。
5周年を迎えるに当たって、我々は世に ゼロ除算の理解を広く求め、かつ、関係者の研究への参加と協力を求め、かつお願いしたい。
数学の教育関係者、出版関係者には初歩的で基本的な新しい数学からの広範な影響を 教育・文化に反映させるように協力をお願いしたい:
再生核研究所声明 431(2018.7.14): y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?
(部分引用: 原点から出る直線の勾配で 考えられない例外の直線が存在して、それが
y軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会,代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。)
以 上
再生核研究所声明 418(2018.2.24): 割り算とは何ですか? ゼロ除算って何ですか - 小学生、中学生向き 回答
ここ2回に亘ってゼロ除算の解説を高校生、中学生向きに解説したので、今回はそれらの前に小学生などを意識して、割り算の意味とゼロ除算の意味を解説したい。
まず、割り算ですが、割り算を最初に考えたのは、アダムとイブで仲良くリンゴを2つに分けたことにあると楽しく表現した人がいます。 10個のリンゴを2人で仲良く分ければ、5個ずつ分けると丁度良いと考えますね。これは10割る2の意味で、割り算とは同じように分けることと考えられます。 10個のリンゴを3人で分ければ、3個ずつ分けると1個余りになると考えれば、10割る3は 3余り1です。 これらを 10/3 = 3 … 1 等と書き、 10を3で割ると商が3で余りは1と表現します。 少し、 難しく、50を13で割るとどうなるでしょうか。 少し考えて、50/13 = 3… 11 となります。 確かめるには、本当に分けた結果が50になるかを確認すればいいですね。 13が 3つあると 39で 11個残りと言っているので、確かに全体で50になるので、結果が正しいことが分かります。
割り算は難しいと 有名な言葉が有りますが、
― 割り算のできる人には、どんなことも難しくない。
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス(アイルランドの神学者)
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
P199より
簡単に考える方法があります。50に13が幾つあるかを考えているので、50引く13を繰り返して、 引けるまで、引き算を 繰り返します:
50-13=27、
27-13=14、
14-13=1
1から13は引けませんから、13は3個あるとなって、割り算の商が求まります。 この手順は何時でも決まった方法で必ず答えが得られますので、分かり易く実際、感情や直感、経験、
工夫などが苦手な計算機は割り算の商を計算するときにこのようにして自動的に計算しています。繰り返し引いていくので、繰り返して除いて行きますので、割り算は除算と呼ばれ、 西欧でも中世時代そのようにして計算していたというのです。 除算の名称は素晴らしいですね。
ゼロ除算とは、ゼロで割ることを考えることですから、 50割るゼロをやって見ましょう。
50-0=50
ですから、50はゼロを引いても引いたことにはならず、50/0=0 となるのではないでしょうか?
50のところは何でも結果はゼロだということになります。 ここをそうだと言ったら、1000年や2000年を越える新しい結果であるとなりますから、 大変です。 皆さんゼロで割ってはいけないと教えられてきていて、それが現代数学の定説です。
ところが、ゼロ除算は ある自然な意味で、何でもゼロで割ればゼロであるという数学を発見して ここ4年間研究を続けていますが このような新しい考えは、 数学の基礎と私たちの空間の考えを変える必要があり、大きな影響が有ります。
そこで、次の、中学、高校生ようの解説に進むことが出来ます。
そこに、小学1年生のお友達が出てきますから、面白いですね。
再生核研究所声明 417(2018.2.21): ゼロ除算って何ですか - 中学生、高校生向き 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。何事始めが大事ですから、この意味が分かるように 次で詳しく解説されている部分を編集して、分かり易く説明したい:
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
前回の声明、再生核研究所声明 416(2018.2.20): ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
それ以前のこととして、今回はより基本的なことを述べたい。
12割る2は6、12割る3は4、12割る4は3、12割る6は2です。 12割る5は、商は2で余りは2で、12割る7は 商は1で余りは5です。これらを、普通、12/2=6,12/3=4,12/4=3,12/6=2 と分数で表現し、後半のように割り切れないときは 余りを表現したり、少数点以下割り算をどんどん 続けて行く場合などいろいろな考え方、表現があります。ここでは、簡単な場合として 自然数、1、2、3、4、、、、 の場合を考えましょう。
割り切れるときには、次の等式が成り立つことが大事です:
2X6=12, 3X4=12, 4X3=12, 2X6=12.
実際、12割る3を考えるとき、12の中に3が いくつ有るかと考え、3に何を掛けたら12になるかと考えるのではないでしょうか。ここには少し難しいところが有って、計算機などは決まった考えしかできないので、12から3を次々に引いて何回引けるかと考えれば、何時でも決まった考え方で割り算の商を求めることが出来ます。前半の考えは掛け算の逆を考えて、後半は引き算を何回やっての考え方ですから、前半の考えには感覚、予想などが必要であって、難しいですが、引き算の繰り返し(除いていく計算、除算)をただやればよいのですから、簡単です。計算機はこのようにして 割り算を実際行っています。
ゼロ除算とは、ゼロで割ることを考えるのですから、上記の場合、割る数、2,3,4,6のところでそれらがゼロだったらどうなるかと考えること、それがゼロ除算です。 ゼロで割ることを考えることです。
掛け算の逆で考える方法では、ゼロに何を掛けてもゼロですから、例えば、100/0は 0Xa=100 を探したいと考えても、0Xa =0 ですから、できない、存在しないということになってしまいます。そこで、現代数学では ゼロで割ってはいけないと教えられています。 数学界では2000年を超えた定説です。問題は、世の中には、分母がゼロになる公式が沢山現れて、分母がゼロになる場合が問題になります。
例えば、理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。(r^2は rの2乗の意味)。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば無限大か? 無限大とは何か、数か? その意味が不明であるという点である。
そもそも足し算、掛け算の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インドの数学者・天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも大事な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな意義、影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の我々の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と神秘的な問題は、アインシュタインの人生最大の関心であったという言葉に象徴される。
物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、あるいは軽ろんじて、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたことは 実に奇妙、実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。ゼロ除算は至るところに見られると言っても良いほどです。
ゼロ除算を発見して議論を広く議論して間もなく、道脇愛羽さん当時6歳と緩まないネジで 有名なお父さん道脇裕氏たちは、3週間くらいで何でもゼロで割ればゼロであるとの驚嘆すべき発見に対して、理由を付けてそれは自明であると述べてきたのは 実に面白いことです。多くの専門家が、2、3年を越えても分からないと言っている経過を見ると本当に驚きです。
100/0 を100 から 0を何回引けるかと考えると、0を引いても100 は減りませんので、引いたとはいえず、減らすという意味で引ける回数はゼロ、したがって100/0=0 そして、余りが100であるとしました。 私たちは、割り算の意味を拡張して、ゼロ除算は拡張された分数の意味、割り算で 何でもゼロで割ればゼロであるという理論を数学的に確立させました。
1300年間も 創始者の考えを間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智への愛、良心から、熱い想いが湧いてくる。 ― 1300年も前に、創始者によって、0/0 = 0 とされてきたのに それは間違いだとして、現在も混乱しているのは、まずいのではないでしょうか?
できない(不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。
内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。高級編は ohttp://okmr.yamatoblog.net/ にあります。
以 上
再生核研究所声明 416(2018.2.20): ゼロ除算をやってどういう意味が有りますか。何か意味が有りますか。何になるのですか - 回答
ゼロ除算とは例えば、100割るゼロを考えることです。普通に考えると、それは考えられない(不可能)となるのですが、それが分かることが まず第1歩です。この意味が分かるまでは、 次には進めませんので、興味があれば、 次で解説されている最初の方を参照してください:
ゼロ除算の研究状況は、数学基礎学力研究会 サイトで解説が続けられています: http://www.mirun.sctv.jp/~suugaku/
できない(不可能である)と言われれば、何とかできるようにしたくなるのは相当に人間的な素性です。いろいろな冒険者や挑戦者を想い出します。ゼロ除算も子供の頃からできるようにしたいと考えた愛すべき人が結構多く世界にいたり、その問題に人生の大部分を費やして来ている物理学者や計算機科学者たちもいます。現在、ゼロ除算に強い興味を抱いて交流しているのは我々以外でも海外で 大体20名くらいです。ある歴史家の分析によれば、ゼロ除算の物理的な意味を論じ、ゼロ除算は不可能であると最初に述べたのはアリストテレス(BC 384-322) だということです。
また、アインシュタインの人生最大の懸案の問題だったと言われています。実際、物理学には、形式的にゼロ分のが 出て来る公式が沢山有って、分母がゼロの場合が 問題になるからです。いま華やかな宇宙論などでブラックホールや宇宙誕生などと関係があるとされ、ゼロ除算の歴史は 神秘的です。
ところが、ゼロを数学的に厳密に扱い、算術の法則を発見したインドのBrahmagupta (598 -668 ?) は 何と1300年も前に、0/0 はゼロであると定義していたというのです。それ以来1300年を超えてそれは間違いであるとされて来ました。1/0 等は無限大だろうと人は考えて来ました。関数 y=1/x を考えて、 原点の近くで考えれば、限りなく正の無限や負の無限に発散するので人は当然そのように考えるでしょう。天才たちもみんなそうだと考えて、現代に至っています。
ところが偶然4年前に 驚嘆すべき事実を発見しました。 関数 y=1/x の原点の値をゼロとすべきだという結果です。聞いただけで顔色を変える数学者は多く、数年経っても理解できない人は多いのですが、素人がそれは美しい、分かったと喜ぶ人も多いです。算術の創始者Brahmaguptaの考え、結果も 実は 適当であった。正しかったとなります。― 正しいことを間違っているとして来た世界史は 恥ずかしいのではないでしょうか。
この結果、無限の彼方(無限遠点)、無限が 実はゼロ(ゼロで表される)だったとなり、ユークリッド、アリストテレス以来の我々の空間の考えを変える必要が出て来ました。案内の上記サイトで詳しく解説されていますが、私たちの世界観や初等数学全般に大きな影響を与えます。どんどん全く新しい結果、現象が発見されますので、何といっても驚嘆します。 内容レベルが高校生にも十分分かることも驚きです。例えば、y軸の勾配がゼロで、tan (\pi/2) =0 だという驚きの結果です。数学というと人は難しくて分からないだろうと思うのが普通ではないでしょうか。そこで、面白く堪らなく楽しい研究になります。 現在、簡単な図を沢山入れてみんなで見て楽しんで頂けるような本を出版したいと計画を進めています。
内容は上記サイトで、相当素人向きに丁寧に述べているので、興味のある方は解説の最初の方を参考にして下さい。
以 上
再生核研究所声明 414(2018.2.14): 第1回ゼロ除算研究集会基調講演要旨
(日時:2018.3.15(木曜日) 11:00 - 15:00 場所: 群馬大学大学院 理工学府)
ゼロで割る問題 例えば100/0の意味、 ゼロ除算は インドで628年ゼロの発見以来の問題として、神秘的な歴史を辿って来ていて、最近でも大論文がおかしな感じで発表されている。ゼロ除算は 物理的には アリストテレスが 最初に不可能であると専門家が論じていて、それ以来物理学上での問題意識は強く、アインシュタインの人生最大の関心事であったという。ゼロ除算は数学的には 不可能であるとされ、数学的ではなく、物理学上の問題とゼロ除算が計算機障害を起こすことから、論理的な回避を目指して、今なお研究が盛んに進められている。
しかるに、我々は約4年前に全く、自然で簡単な 数学的に完全である と考えるゼロ除算を発見して現在、全体の様子が明かに成って来た。そこで、ゼロ除算を歴史的に振り返り、我々の発見した新しい数学を紹介したい。
まず、歴史、結果と、結果の意義と意味、を簡潔に 誰にでも分かるように解説したい。
簡単な結果が、アリストテレス、ユークリッド以来の 我々の空間の認識を変える、実は新しい世界を拓いていること。それらを実証するための 具体例を沢山挙げる。我々の空間の認識は 2000年以上 適切ではなく、したがって 初等数学全般に欠陥があることを 沢山の具体例で示す。
ゼロ除算は新しい世界を拓いており、この分野の研究を進め、世界史に貢献する意志を持ちたい。
尚、ゼロおよび算術の確立者 Brahmagupta (598 -668 ?) は1300年以上も前に、0/0=0 と定義していたのに、世界史は それは間違いであるとしてきた、数学界と世界史の恥を反省して、世界史の進化を図りたい。
以 上
0 件のコメント:
コメントを投稿