El curioso origen del cero ¡Te contamos como cambió el mundo!
- Tue, 15/01/2019 - 18:50
Indudablemente el cero es un símbolo omnipresente a nivel mundial, una piedra fundacional para comprender y trabajar en ámbitos como el cálculo, la contabilidad, la aritmética o en el campo de las computadoras; este guarismo ha estimulado a las mentes más brillantes, y ha sido un elemento misterioso en cuanto a sus orígenes.
Aunque la gente siempre ha entendido qué significa “la nada” o “no tener nada”, el concepto relacionado directamente con el cero es relativamente nuevo. Como con tantos otros inventos maravillosos, la India dio al mundo la concepción del cero alrededor del siglo V d.C. Hoy en día usamos el sistema arábico, pero durante siglos la gente marcó cantidades con una variedad de símbolos y figuras, aunque era incómodo realizar los cálculos aritméticos más simples con estos sistemas numéricos.
Antes los matemáticos se mantuvieron realizando sus cálculos sin complicarse demasiado, pero en la actualidad el cero -tanto como un símbolo (o número)- se erige como un concepto que significa la ausencia de cualquier cantidad; en este sentido el cero permitió realizar cálculos y ecuaciones complicadas, dando pie a la invención de las computadoras.
Mentes ancestrales
El primer sistema para calcular los inventarios de bienes como animales, viene de los sumerios. Este sistema era posicional; es decir, la colocación de un símbolo particular relativo a otros denotaba su valor. Así, este sistema se transmitió a los akkadianos alrededor de 2500 a.C y luego a los babilonios en 2000 a.C. Los babilonios concibieron por primera vez una marca para indicar que faltaba un número en una columna; así como 0 en 1076 significa que no hay cientos en ese número. Aunque el ancestro babilónico de cero fue un buen comienzo, se mantuvo durante siglos antes de que apareciera el símbolo tal como lo conocemos ahora.
Los matemáticos de renombre entre los griegos antiguos, que aprendieron los fundamentos de sus matemáticas de los egipcios, no tenían un nombre para cero, ni su sistema ofrecía toda la versatilidad al igual que el babilónico. Cabe destacar que no hay evidencia concluyente para decir que el símbolo incluso existió en su idioma. Fueron los indios quienes comenzaron a entender el cero tanto como símbolo e idea.
Brahmagupta y el 0
Se le atribuye la formalización de operaciones aritméticas usando el cero a Brahmagupta, alrededor de 650 d.C. Él utilizó puntos debajo de los números para indicar un cero. Estos puntos fueron alternativamente referidos como 'sunya', que significa vacío, o 'kha', que significa lugar. Brahmagupta escribió reglas estándar para alcanzar cero a través de la suma y resta, así como los resultados de las operaciones con cero. El único error en sus reglas era la división por cero, una situación que tendría que esperar a la llegada de Isaac Newton y G.W. Leibniz para ser solucionado.
Cero en las Américas
Los mayas desarrollaron el cero como un marcador de posición alrededor de 350 d.C. y lo usaron para denotar un marcador de posición en sus elaborados sistemas de calendario. A pesar de ser matemáticos altamente calificados, los mayas nunca utilizaron cero en ecuaciones. Robert Kaplan, autor de "The Nothing That Is: A Natural History of Zero”, describe la invención maya del cero como:
"El ejemplo más llamativo del cero que se ha ideado completamente desde cero".
Europa y el 0
Tendrían que pasar varios siglos antes de que el cero llegara a Europa.
Los viajeros árabes aparte de llevar especias y artículos; cargaron con los textos de Brahmagupta. El cero llegó a Bagdad en 773 d.C, para ser desarrollado en el Oriente Medio por matemáticos árabes que basarían su número en el sistema indio. En el siglo IX, Mohammed ibn-Musa al-Khowarizmi incursiona por primera vez en ecuaciones que igualaron a cero, o álgebra como se llegó a conocer.
También desarrolló métodos rápidos para multiplicar y dividir números conocidos como algoritmos. Al-Khowarizmi llamó al cero 'sifr', del cual se deriva nuestro cifrado. En 879 d.C, el cero se escribía casi como lo conocemos ahora, un óvalo, pero en este caso más pequeño que los otros números. A mediados del siglo XII, gracias a la conquista de España por los Moros, el cero llega finalmente a Europa; posteriormente las traducciones de la obra de Al-Khowarizmi se dirigieron a Inglaterra.
Fibonacci
El matemático italiano Leonardo de Pisa, conocido como Fibonacci se basó en el trabajo de Al-Khowarizmi con algoritmos en su libro Liber Abaci, o el “Libro del Ábaco", en 1202. El ábaco está considerado como el artilugio más antiguo para realizar cálculos matemáticos, quizás la primera calculadora de la historia. Los desarrollos de Fibonacci rápidamente fueron notados por los comerciantes italianos y los banqueros alemanes, especialmente por el uso del cero.
En este sentido, los contadores de la época sabían que sus libros estaban equilibrados cuando los montos positivos y negativos de sus activos/pasivos eran iguales a cero. Pero los gobiernos todavía desconfiaban de los números arábigos debido a la facilidad con que era posible cambiar un símbolo en otro, por lo que el gobierno italiano prohibió su uso, de esta manera los comerciantes continuaron usándolo de forma secreta e ilegal. Aunque el cero estuvo como un proscrito durante un tiempo, los comerciantes siguieron usando cero en mensajes cifrados, así podemos observar la derivación de la palabra cifra, que significa código, de la “sifr” árabe.
Descartes, Newton y Leibniz
René Descartes, el fundador del sistema de coordenadas cartesianas fue otro gran matemático que usó en sus operaciones el cero. Como cualquiera que haya tenido que graficar un triángulo o una parábola sabe que el origen de Descartes es (0,0). Aunque el cero se estaba volviendo más común, los desarrolladores de cálculo, Newton y Leibniz, darían el paso final en la comprensión de cero.
Sumar, restar y multiplicar por cero son operaciones relativamente simples. Pero la división por cero había confundido incluso las grandes mentes. ¿Cuántas veces cero pasa a diez? ¿Cuántas manzanas inexistentes entran en dos manzanas? La respuesta que concluye como indeterminada, dio con la clave para trabajar con el cálculo. Un ejemplo ante estos entuertos matemáticos es:
"Si se conduce un carruaje hacia un lugar determinado, la velocidad nunca es constante. Esto es debido a la irregularidad del terreno, pausas o curvas; que hacen que se tenga que acelerar o frenar".
Pero, ¿"cómo se podría encontrar la velocidad del vehículo en un momento determinado? Aquí es donde el cero y el cálculo entran al juego".
El análisis de este tipo de problemas pudo ayudar a determinar la velocidad en un instante en particular. En este sentido, se mide el cambio de velocidad que se produce durante un período de tiempo determinado. Haciendo el período establecido más pequeño y más pequeño, se podría razonablemente estimar la velocidad en ese instante; al hacer que el cambio en el tiempo se acerque a cero, la relación entre el cambio de velocidad y el cambio en el tiempo se vuelve similar a algún número sobre cero, el mismo problema que aturdió a Brahmagupta.
La paradoja del cero
El desarrollo del cero es uno de los mayores logros de la civilización. Gracias a las mentes más brillantes de la época, la comprensión de su concepto que refiere la ausencia significó pavimentar el camino para convertir las matemáticas en un lenguaje global. Hoy se utiliza en todas partes, aunque paradójicamente significa “nada”, o “vacío”, su incursión en el mundo lo cambió todo, pues no podemos decir jamás que nada pasó con el cero…
Ahora el concepto de vacuidad es central para la física moderna, donde todo el universo conocido es visto como un juego de “suma cero”; ahora es tan común que no nos damos cuenta del asombroso papel que juega en nuestras vidas.
Fuente: Culturizando
YS
https://informe21.com/ciencia-y-tecnologia/el-curioso-origen-del-cero-te-contamos-como-cambio-el-mundo
とても興味深く読みました
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:
5年 ゼロ除算の発見と重要性をした:再生核研究所 2014年2月2日
再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:
Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0⁄x= 0 である。しかしx⁄0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。
実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:
しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:
No.81, May 2012(pdf 432kb)
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。
全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。
古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。
2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上
再生核研究所声明225(2015.4.23)偉大な数ゼロ ―ゼロの教え
(最近、急に気に成り出した心境で、本声明は 1種の悟りの心得に通じるので、概ね退職された人向きと言える。)
ゼロ除算の結果は、直角双曲線関数 y=1/x の原点における値が ゼロであると言っている。それは、まるで、原点でゼロが正の量と負の量に 爆発して双方に広がっているようである。その様は現代物理学の学説、ビッグバン、すなわち、宇宙はあるとき、無から爆発によって突然現れ、その爆発の続きが続いているという。 無からの発生は、プラス、マイナス、とで合わせてゼロで、無からの発生はおかしいとも言えないという。これは、全体としてゼロとして釣り合っていることを意味する。universe が全体として ゼロとして釣り合っているということは 奇妙にも我々の心に響くものがある。
苦労しただけ、喜びが湧くのでは?
明るい面があるだけ、暗い面があるのでは?
ゼロは基準値であり、長命な生物も短命な生物も、 長命な人生も、短命な人生も同じようなものではないだろうか?
幼いころ、麦畑の上でひばりのさえずる情景を見たのを想い出す。 飛び立っては天高くまい上がり、やがて巣に戻る。 地平ゼロから始まって地平ゼロに帰する。永くさえずっていても、短くても結局同じではないか。 人間も誕生して、結局は元に戻る。結局、みんな同じようではないだろうか。 人生の長短など本質的には問題では無くて、みんな同じようではないだろうか。 ゼロから始まってゼロに帰する、ゼロとは そのようなものではないだろうか。
他方、ゼロ除算の複素版は、平面上では どのような方向でも どんどん原点から遠ざかれば、無限遠点の1点に行くが、 その無限遠点は、突然、原点に戻っている ことを述べている。これは結局のところ、ゼロから始まってゼロに帰すること、すなわち、元に戻る universe の原理を教えているのではないだろうか。
本声明は、ゼロの心境が大事なこと を述べている。
また、始めが大事であること を述べている。
以 上
再生核研究所声明357(2017.2.17)Brahmagupta の名誉回復と賞賛を求める。
再生核研究所声明 339で 次のように述べている:
世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インドの数学者・天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタは その中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:
Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
物理学や計算機科学で ゼロ除算は大事な課題であるにも関わらず、創始者の考えを無視し、割り算は 掛け算の逆との 貧しい発想で 間違いを1300年以上も、繰り返してきたのは 実に残念で、不名誉なことである。創始者は ゼロの深い意味、ゼロが 単純な算数・数学における意味を越えて、ゼロが基準を表す、不可能性を表現する、神が最も簡単なものを選択する、神の最小エネルギーの原理、すなわち、神もできれば横着したいなどの世界観を感じていて、0/0=0 を自明なもの と捉えていたものと考えられる。実際、巷で、ゼロ除算の結果や、適用例を語ると 結構な 素人の人々が 率直に理解されることが多い。
1300年間も 創始者の結果が間違いであるとする 世界史は修正されるべきである、間違いであるとの不名誉を回復、数学の基礎の基礎である算術の確立者として、世界史上でも高く評価されるべきである。 真智の愛、良心から、厚い想いが湧いてくる。
以 上
ゼロ除算について考察を深めているが、それは当然ゼロの意味を究めることに繋がる。 そこでゼロ自身についても触れてきた:
再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
この要旨は:
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。
座標系の導入における 位置の基準点を定めること。
複素平面では立体射影した場合における無限遠点が正しくゼロに対応する点である。
全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。
再生核研究所声明297(2016.05.19) 豊かなゼロ、空の世界、隠れた未知の世界
要旨は:
微分方程式のある項を落とした場合の解と落とす前の解を結び付ける具体的な方法として、ゼロ除算の解析の具体的な応用がある事が分かった。この事実は、広く世の現象として、面白い視点に気づかせたので、普遍的な現象として、生きた形で表現したい。
ある項を落とした微分方程式とは、逆に言えば、与えられた微分方程式はさらに 複雑な微分方程式において、沢山の項を落として考えられた簡略の微分方程式であると考えられる。どのくらいの項を落としたかと考えれば、限りない項が存在して、殆どがゼロとして消された微分方程式であると見なせる。この意味で、ゼロの世界は限りなく広がっていると考えられる。
このような視点で、人間にとって最も大事なことは 何だろうか。それは、個々の人間も、人類も 大きな存在の中の小さな存在であることを先ず自覚して、背後に存在する大いなる基礎、環境に畏敬の念を抱き、謙虚さを保つことではないだろうか。この視点では日本古来の神道の精神こそ、宗教の原点として大事では ないだろうか。未知なる自然に対する畏敬の念である。実際、日本でも、世界各地でも人工物を建設するとき、神事を行い、神の許しを求めてきたものである。その心は大いなる存在と人間の調和を志向する意味で人間存在の原理ではないだろうか。それはそもそも 原罪の概念そのものであると言える。
発想における最も大事なことに触れたが、表現したかった元を回想したい。― それは存在と非存在の間の微妙な有り様と非存在の認知できない限りない世界に想いを致す心情そのものであった。無数とも言える人間の想いはどこに消えて行ったのだろうか。先も分からず、由来も分からない。世の中は雲のような存在であると言える。
上記2件は、ゼロが基準を表すこと、無限や無限遠点の表現になっていること、消えて行った世界の神秘的な性質を述べている。
ここ3年、広くゼロ除算現象を探してきて発見したゼロの性質として、起こりえない現象や不可能性を広く表すことが分かった。
そもそもゼロで割る問題とは、最も簡単な方程式 ax=b をa=0の場合に考える事と解釈できる。一般的に考えられる解(一般逆)として、x=0 が得られると解釈できるが、その心として、神は混乱が起きたとき、元に、基準に戻る、最も簡単なものを選択すると理解できるが、これは、不可能性をも表現していると言える。 これは新しい視点である。b=0 の時の解 x=0はもともとの意味でのゼロであるが、b がゼロでない時の解x=0 は不可能性を表すゼロであると言える。ゼロの2面性を主張したい。不可能性を表す例はゼロ除算の発現を広く探している折に発見された新しい視点である。
無限とは、極限値の概念で捉えられるが、定まった数のようにも扱われている。数としての無限は曖昧である。
ところが、無限大は、無限遠点は ゼロで表されることが発見され、また証明も与えられた、これはゼロ除算から導かれたが、同時にゼロの新しい意味をも受け入れる必要がある。ゼロが不可能性をも表現しているという事実である。
水平方向にx軸、鉛直上方方向にy軸をとる。 原点から,角アルファで初速度v_0
で質点を投射する。最高到達点の高さ、水平到達点までの距離、最高到達点に至るまでの時間など、引力がなければ(g=0の場合を考える)、どんどん飛んでいき無限の彼方まで、これが従来の表現であるが、ゼロ除算では、最高到達点の高さ、水平到達点までの距離、最高到達点に至るまでの時間などは全てゼロで表される。
以 上
(2018.7.26.16:35 沢山ゼロ除算の例を作られたり、相当ゼロ除算の研究に没頭している方からメールが寄せられたが、相当基本的な誤解をしている様子が伺えるので、そのメールをヒントに、誤解を解くような気持で、ゼロ除算の解説をしたい。多くの人が同じような誤解に陥っているのではないかと思われるからである。)
その中で、ゼロ除算は公理系に基づいて議論されていないので、数学界で受け入れ難いのではないかとゼロ除算の数学の不備を指摘している。 数学としてゼロ除算は公理系との関係は 実は 深く関係する面があるが、 ゼロ除算の数学は、厳然として公理系の問題を避けて数学が出来ることを述べたい。
動機、意味付け、裏付けを除いて、はじめにゼロ除算算法を ローラン展開の正則項C_0 で定義する。 ― 簡潔に素人流に言えば、関数y=1/xの原点における値をゼロと定義すること。 これが ゼロ除算の核心である。これだけの仮定からいろいろな結果を論理的に導く。 典型的な例は \tan(\pi/2) = 0 である。 ― これはy軸の勾配がゼロであること、垂直に立っている電柱の勾配がゼロであると表現される。 この結果はユークリッド幾何学、解析幾何学、微分幾何学、三角関数、微分法、複素解析など、広範に現れて従来説明できなかったような状況を上手く解釈できるなど大きな影響を初等数学全般に与える。 簡単には 現代初等数学には 基本的な欠陥があると表現される。 既に800件を超える沢山の具体例が得られ、公表されている。そこで問題は、最初の仮定が 証明できないで仮定されていることである。それ故に 確かでないものから導かれた結果が危うく成るのではないだろうかと 人は危惧されるのでは ないだろうか。仮定から導かれた結果とは 何だろうか。こういう仮定をすれば、このような結果が得られるでは、最初の仮定がおかしければ それから導かれる結果もおかしくなるのではないだろうかと心配する。 そこで数学とは何だろうかと問う必要がある。 数学とは公理系から導かれた関係からなる総体が一つの数学である。 群の公理系から導かれる全体が群論であり、ユークリッド空間の公理系から導かれる関係の世界が ユークリッド幾何学である。 ゼロ除算算法の仮定から導かれる世界がゼロ除算数学であり、その意味でゼロ除算算法の定義は公理のようなものである。 大事なことはゼロ除算の真偽は問えないということである。良い数学とは、ゼロ除算が良い数学と言えるかどうかは、それらから導かれた結果、関係、展開が世の中にどれほどの良い影響を与えるかにかかっており、仮定や公理系の真偽はただ矛盾なく展開されているかにかかっていると言える。
そこでゼロ除算の数学の優秀性を示す為に沢山の具体例を示し、人生観や世界観に関わる大事な世界を拓くことを具体的に示している。特にユークリッド以来の空間の考えを齎した意義を示している。 現代初等数学が全般的に初歩的な欠陥があることを広く示している。
ゼロ除算は ゼロ除算の定義の発見であり、ゼロ除算をどのように捉えるかが本質的な問題であった。ゼロ除算関係者には 空回りを続けている人がほとんどで、ゼロ除算の意味、定義をきちんとできなかったためと考えられる。ゼロ除算とは発見であり、1/0,0/0,z/0などの定義、意味をはっきりさせることであった。 その上で、それらのものにゼロを対応させることである。ちょうど群の公理系が定義されているように、ゼロ除算を含む山田体の構造すら確立されており、ゼロ除算の数学的基礎は既に確立している。
特にゼロ除算では、得られた結果を吟味して 良いものを採用するように要請している。
しかしながら、この態度は そもそも数学の基本的な姿勢では なかったろうか。得られた結果がどのような意味を有し、より良い効果を社会に齎すか 絶えず検証する態度が大事ではないだろうか。 その様な検証が無ければ独りよがりの世界に陥ってしまうのでは ないだろうか。
非ユ-クリッド幾何学の出現で 平行線が無限個存在する幾何学が現れたと言われれば、そのような数学には 正しくても興味も関心も無いと 最初人々は考えたのではないだろうか。ゼロ除算の数学でも1/0=0/0=\tan(\pi/2)=0 と言われれば、同じように発想するのではないだろうか。しかし、具体的に良く調べてみると、ゼロ除算が無い現代数学が 基本的な欠陥を有することが、沢山の具体例から分かるだろう。
2018.7.27.8:40
以 上
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館
(2018年9月8日―24日 )
2018.9.17. 展示書籍などを拝見させて頂きました。大変賑わっていて関心の大きさが感じられました。時間の関係で じっくり、詳しくとは行きませんでしたが、全体の案内(知の連鎖系譜マップ)で、初期、初めにアリストテレスとユークリッドが 在って、中間くらいにニュートン、最後がアインシュタインで 世界史を壮観する想いがしました。 数学では 非ユークリッド幾何学の扱いにおけるガウスの記述、資料の欠落と算術の発見、ゼロの発見の Brahmagupta (598 -668 ?) の欠落は 残念に思われました。書籍など無くても大事な事実と思いますので、 大きく取り上げて欲しかった。
この世界史年表で凄いことに気づいて興奮して後にしました。
ゼロ除算がこれらで基本的な関与があるからです。
まず、ゼロ除算は、ユークリッド幾何学の変更を求め、連続性のアリストテレスの世界観に反して、強力な不連続性の世界を示しています。ゼロ除算はアインシュタインの人生最大の関心事であったとされ、今でもなお、ゼロ除算とアインシュタインの相対性理論との関係が議論され、ブラックホールは 神がゼロで割ったところに存在するなどと 神秘的な問題を提供しているからです。
もちろん、Brahmaguptaは ゼロ除算を議論していて、その後、1300年に亘って、世界史で議論されてきて、 ニュートン力学でも基本的な問題を提起している。 当然、非ユークリッド幾何学とも関係していて、それらの空間とも違う全く新しい幾何学を提案している。このように考えると、検討中の Division by Zero Calculus の著書(出版契約済み)は 世界史上で大きな扱いになるだろうと発想して、大変興奮して、展示会を後にしました。
広く世界に意見を求め、この著書の出版計画を進めたい。 そのためにも途中経過も公表して行きたい。
ところで、 展示会の名称には 世界を変えた科学の書物展示会などと、 科学などの言葉を加える必要があるのではないでしょうか。 そうでなければ、 バイブル、法華経、コーラン、論語などが並ぶことになるのでは ないでしょうか。
尚、ゼロ除算については、一般向きには
数学基礎学力研究会 サイト:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
○ 堪らなく楽しい数学-ゼロで割ることを考える
で4年間を越えて解説を続けています。
最後に素晴らしい展示会を企画され、そのために努力された人たちに 敬意と感謝の気持ちを表明したい。
ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a 割る b のことで、これは 方程式 b x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:
最近、3つの事が在りました。
私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。
これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
最近、3つの事が在りました。
私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。
これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
ゼロ除算の4つの誤解:
1. ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2. 可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3. ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4. 深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
Eπi =-1 (1748)(Leonhard Euler)
E = mc 2 (1905)(Albert Einstein)
1/0=0/0=0 (2014年2月2日再生核研究所)
ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0
https://ameblo.jp/syoshinoris/entry-12420397278.html
1+1=2 ( )
a2+b2=c2 (Pythagoras)
1/0=0/0=0(2014年2月2日再生核研究所)
0 件のコメント:
コメントを投稿