6の約数は1、2、3、6です。6とは異なる6の約数だけを考えると、それらは6のアリコートと呼ばれ、それらは1、2、3です。したがって、6のアリコートの合計は6になります。古くから、この予想外の性質は算数の愛好家を魅了し、6のような「完全な数」の整数と呼びます。アリコートはそれ自体に等しい。
そのアリコートが1、2、4、7および14である整数28は、2番目の完全数です。ピタゴラス人はこれらの数字に興味を持っていました、しかし後に古代では、我々は6、28、496、および1288である4つの小さいものだけを見つけました。時代の変わり目に、アレクサンドリアのフィロ、 Creationに関する彼の本の中で、世界が6日で創造され、月が28日で地球の周りを回るなら、それは6と28が完全な数だからであると述べています。聖アウグスティヌス(354-430)は最初の発言を繰り返した。
8128を超える完全数は、33、550、336、8、589、869、056、137、438、691、328、2、305、843、008、139、952、128などである。私たちは今50の完璧な数を知っています。これらはすべて2p - 1(2p - 1)の形式です。ここで、2p - 1は素数です。既知の完全数を与えるpの値は次のとおりです。
これにより、21(22−1)= 6となる。これにより、22(23−1)= 28となる。これにより、24(25−1)= 496となる。7; 13; 17; 19; 31; 61; 89; 107;127; 521; 607; 1,279; 2,203; 2,281; 3,217; 4,253; 4,423; 9,689; 9,941; 11,213; 19,937; 21,701;23,209; 44,497; 86,243; 110,503; 132,049; 216,091; 756−839;859,433; 1,257,787;1,398,269;2,976,221; 3,021,377;6,972,593;13,466,917。996,011; 24,036,583。25,964,951;402,457; 32,582,657;37,156,667; 42,643,801; 43,112,609; H。57,885,161; H.74,207,281;77,232,917。
最大のものは、35番目から、GIMPSプロジェクト(https://www.mersenne.org/primes/ )の計算から来ています。1996年以来、これらの数を発見するために系統的な分散検索を組織しています。そして、リストの最後の3つの間に、まだ発見されていない他の完全な数が入っている可能性があります。
2p - 1の形式の素数は "メルセンヌ素数"と呼ばれます。約紀元前300年頃、ユークリッド、彼の要素の本IXは、2p - 1が素数であれば、2p - 1(2p - 1)が完全な偶数であることを実証した。17世紀に、偉大なレオンハルト・オイラーは、その逆数を証明しました。偶数が完全ならば、それは必然的に2p - 1(2p - 1)の形になります。ここでpは2p - 1が素数であるようなものです。したがって、Mersenneから素数を見つけることは、完全な数を見つけることと同じです。GIMPSとはGreat Internet Mersenne Primes Search以外の意味です。
EuclidとEulerによる完全数の特徴付けから、28からの完全偶数は連続した奇数の立方体の和であると推論します。たとえば、次のようになります。28 = 13 + 33; 496 = 13 + 33 + 53 + 73。8 128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153。
必ずすべての完全なペアをとる形式を知っていますが、無限大があることを証明することはできません。そうだと思います。
それどころか、奇数の完全数はないと考えられていますが、まだ証明されていません。奇数の完全数に関する数学的な研究は、もしそれらが存在するなら、それらが見つけるのが難しいだろうということを示すいくつかの驚くべき結果をもたらしました。Nが奇数の完全数である場合、それは101,500より大きく、少なくとも101の素数があります(2012年に発表されたPascal OchemとMichaëlRaoの結果)。そのようなNの素因数間に、もしあれば、少なくとも10は異なる(2015年に発表されたPace Nielsenの結果)。さらに、3がNの約数でない場合、Nは少なくとも12の異なる素因数をもちます(2007年に発表されたPace Nielsenの結果)。
1億個の可算ペア
nのアリコートの合計をs(n)で表し、この関数の値を整数の後の整数で辛抱強く計算すると、s(220)= 284とs(284)がわかります。 )=220。実際、284は1、2、4、71、および142で割り切れ、その合計は220、220は1、2、4、5、10、11、20、22、44で割り切れる、55および110、それらの合計は284である。
整数220と284のこの奇跡的な組み合わせは、次のように修飾された数の愛好家の注目を集めました...https://www.pourlascience.fr/sr/logique-calcul/mysterieux-diviseurs-15997.php
とても興味深く読みました
ゼロ除算の発見は日本です:
∞???
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:5年 ゼロ除算の発見と重要性をした:再生核研究所 2014年2月2日
再生核研究所声明343(2017.1.10)オイラーとアインシュタイン
世界史に大きな影響を与えた人物と業績について
再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教
で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。
オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質はエネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:
Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).
今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上
再生核研究所声明347(2017.1.17) 真実を語って処刑された者
まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシアの数学者、哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者、ドミニコ会の修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクスの地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。
さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。
知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、
1) 新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2) 従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3) もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4) もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5) 巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。
数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。
以 上
再生核研究所声明 457(2018.10.16): 人類は何をなせしか - 広い視点
次の声明
でも述べたように、 世界史を科学の発展の視点から見ると、世界史を簡明に見えるが、雄大な世界史もいろいろな視点から捉えれば、結構 簡潔に捉えられるのでは ないだろうか。 スポーツマンは 人類は100mを9秒台で走ったものである。人類は、核兵器を開発し、惑星に移動した記録を残した。 複素解析学を発見して、 オイラーの公式を発見し、 相対性の理論を得ていたなど。 数学・物理学・科学などの発展の様子は 分かり易い人類の文化のバロメータ―になるだろう。 現在の状況では 今後 100年くらいを思考出来ても 200年先については 人類の生存すら保証できない 危うい存在ではないだろうか。 例えば環境の汚染と激変、人口の増大と爆発、不安定な国際関係と紛争の拡大、政治的には暗黒社会の可能性すら危惧される。
世界史を閉じるとき、人類は世界史をどのように評価するか、そのような視点を持つことは良い視点を与えるのでは ないだろうか。 山間部を散歩していると 人類の絶滅もそう遠いものではないことを教えてくれる。 人間はそうは賢くなく、 野生動物にも劣る存在であることをよく教えてくれる。 独断と偏見、偏狭な視点、小さなエゴにしがみ付いた存在である。 大義を懐く、人間を目指したい、育てたい。 - 競争や仲間争い、闘争に明け暮れていたでは 情けない。さらに 生態系をおかす がん細胞 のような存在であった とは成りたくない。
ゼロ除算の 神秘的な永い歴史 において、ゼロ除算の発見は、世界史が恥ずかしいものであり、人間が如何に、 予断と偏見に満ちた 単細胞的存在で、人類の知能さえ そうたいしたものでないこと を よく教えてくれる。 実際、未だに 人類はゼロ除算を認知しているとは 言えず、 国家間の紛争も絶えず、核兵器すらもてあそんでいる 恥ずかしい様 を示している。作用、反作用の原理、公正の原則
(再生核研究所声明 1 (2007/01/27):美しい社会はどうしたらできるか、 美しい社会とは:
最近の世相として,不景気・政界・財界・官界・大学の不振,教育の混迷,さらにニューヨークのテロ事件,アフガン紛争,パレスチナ問題と心痛めることが多いことです.どうしたら美しい社会を築けるでしょうか.一年半も前に纏めた次の手記はそれらのすべての解決の基礎になると思いますが,如何でしょうか.
平成12年9月21日早朝,公正とは何かについて次のような考えがひらめいて目を覚ました.
1) 法律,規則,慣習,約束に合っているか.
2) 逆の立場に立ってみてそれは受け入れられるか.
3) それはみんなに受け入れられるか.
4) それは安定的に実現可能か.
これらの「公正の判定条件」の視点から一つの行為を確認して諒となればそれは公正といえる.-以下略)
を 理解すれば、実際、世の多く問題は解決に向かうだろう。 少なくても愚かな紛争は 避けられるだろう。 しかしながら、 同じような過ちを繰り返しているように見える。
人類の誇りとは 何だろうか。 人類に 問いたい。 ― 人類は何を なせしか。 私は 何を なせしか と自らに問いたい。
以 上
再生核研究所声明 455(2018.10.9): ゼロ除算は幾らの価値がありますか、人間をどう救うのですか
― 回答
ゼロ除算に興味・関心を懐く好ましい方からの質問です。 ノーベル賞受賞者の業績、社会貢献や人命を救った業績などとの比較からそのような率直な発想、質問が湧いたものと思われます。再生核研究所ではその声明の趣旨でも述べているように素人の方のご質問を真摯に受け止め誠意をもって回答してきました。 実際、ゼロ除算の発見の大きな動機は そのような素人の方のご質問、100/0 の意味を問われたことが大きな動機になっています。そこで、おもしろおかしく、楽しく、真面目に回答したい。
ゼロ除算は数拾兆円の価値があるでしょう。まず、ゼロ除算はアリストテレス(BC384 - BC322)、ユークリッド以来の新しい世界を開拓し、直接的にも Brahmagupta (598 - 668 ?)、 Brāhmasphuṭasiddhānta (628), 以来の解明、発見です。 アインシュタインの人生最大の関心事とも伝えられ、万有引力のニュートン力学の式でも深刻な問題を提起していて、天才オイラーなどの有名な間違いや誤解が世界史上でも回想されます。このように神秘的な永い歴史を閉じて、新しい世界を開拓した意義は 如何に大きな価値を有するでしょうか。基本的な世界を拓いたとは、簡潔に次のように述べられます:
ユークリッド空間を変更する驚嘆すべき新しい空間が現れる。非ユークリッド空間とも違った、全く新しい空間である。古典的な結果に間違いが存在することさえ証明された: 無限遠点は無限ではなくゼロで表されること。 直線には、コンパクト化して原点を加えるべきこと。直線とは中心が原点で、半径がゼロの円とみなせること。円に関する中心の鏡像は無限遠点ではなくて、中心それ自身であること。\tan(\pi/2) =0 など全く新しい概念と世界を拓いている。孤立特異点で 解析関数は有限確定値をとること。 x,y 直交座標系で y 軸の勾配はゼロであること、無限遠点に関係する図形や公式の変更。接線や法線の考えに新しい知見。ゼロ除算算法の導入。― 分母がゼロになる場合にも、分子がゼロでなくても、そこで意味のある計算法。従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていた。特異点で微分方程式を満たしているという知見。図形の破壊現象の統一的な説明。物理学などへの広範な応用。 これらは、数学の基礎部分の広い範囲に大きな変更を求めている。教科書、学術書の変更。数・物ばかりではなく、世界観の変更を求める、世界史的な事件である。
数学の超古典的な基礎理論を変更する数学の価値はどのようなものでしょうか。世界中の中等・大学教育の数学の学習を変更するとは、しかも数学の理論は科学が発展する限りは時間によらずに世界の文化に貢献することになります。そうすると数拾兆円の価値など 小さく感じられないでしょうか。 日本で発見されたゼロ除算算法は 世界の人々に愛される 最も有名な日本の世界貢献 になるのは、既に当たり前の事実ではないでしょうか。そのような認知が得られるのは時間の問題ではないでしょうか。数学の理論は、人にも国家にも、よらない普遍性を、不変性を有しています。長期的には 数学の進化には必然的な要素がある と考えられます。ゼロ除算算法は 数学の基礎部分の欠陥 を示していると言えます。
人間をどのように救うのか。この質問はとても尊い質問で重要です。 経済や平和が幾ら発展しても、知識が増大しても、寿命が幾ら伸びても 人間は幸せになれないのではないでしょうか。 人間はどのように生きるべきか、何時までも人間の問いは続き、人間の賢さや、人生の意味などに寄与しなければ、それらは空しいだけ とも言えるからです。
ゼロ除算の発見とその理解は、人間精神の開放 に寄与するでしょう。まずは、人間が、予断と偏見に満ち、盲目的で 単細胞的な存在 であることを教えてくれるでしょう。これは哲学の祖、ソクラテスの言葉 汝みずからを知れ という、深い問いを思い起させるでしょう。 ゼロ除算の理解は 人間精神の開放 に大きく寄与するだろう。それは、人間を救う と表現しても過言ではないと 言える。 ゼロ除算算法の結果、人生図形 というグラフを得たが、それは、人生とは如何なるものか 良く表現していて、実際 悟りの心 にも大きく貢献するだろう。 ゼロ除算算法のない世界は、実際、未だ未明の時代、野蛮な時代 と言える。 新世界は 既に見えている。 次も参照:
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館(2018年9月8日―24日 )
以 上
再生核研究所声明 456(2018.10.15): ゼロ除算算法発見の瞬間
最後に添付するが ゼロ除算算法の重要性のゆえに ゼロ除算算法発見の瞬間 を回想して 記録を確かなものにしたい。
ゼロ除算算法は 解析学、幾何学など初等数学全般に広い影響を与え、 アリストテレス、ユークリッド以来の世界を拓き、微分の概念さえ変え、特に微分方程式論は この新しい概念、算法のゆえに 大きな改変が求められている。
ここで、ゼロ除算算法とは要するに孤立特異点をもつ解析関数において孤立特異点での値をローラン展開の正則部の初項 係数C_0 で定義することで、形式的に1/0=0/0=z/0=0 の結果を考慮しながら結果を吟味しつつ応用して行くということである。ゼロ除算算法は 本質的には定義であり、仮説であり、その重要性のゆえに公理のようなものである。
世にゼロ除算は大丈夫かの疑念が有るように感じられるので、上記のように特に吟味を要請している。良い成果を得る限りにおいて大いに楽しもうと提案している。既に、沢山の驚嘆すべき良い結果を得ている。
そこで、その発見の瞬間を振り返って置きたい。 下記の最初の記録は 発見後 宿舎に戻って 直ぐにブログに書いた貴重な記録である。
学内構内にある宿舎から歩いて30分くらいのところにある ジンボーという大きなショッピングセンターを 週に2回くらい歩いて行き、 買い物をして 宿舎に戻る習慣がありました。 当然、週末はよく行きます。 給与を頂き、物価安のポルトガルのアヴェイロ お金のことは気にせず、 買う度に 得をしたように感じられる幸せな時代でした。さらに、身分が研究員でしたので、楽しい自由な研究が職務で 週一回主に外国、学外の方による1時間の講演がありますが、それに出席が義務づけられていた以外は特に業務が無かったので、自由な時間がたっぷりもてた楽しい時代でした。 ショッピングセンターでは 人のよいご夫妻、若い娘さん達の店員がいるレストランで 何でも自由にとって頂ける店で 好物を好きなだけ頂ける夕食をとるのが習慣でした。 ですから幸せ一杯で両手に買った食品をもって キャンパス内を通り、宿舎に向かっていました。 そこで、 学内の池のほとりに差し掛かった時、 何かあると直感して、独りでに 静かに立ち止まりましたら、すると突然閃きました。 その時、確かに月が真上にありました。 電光のように閃めいたのです。 関数 f(z) = e^{1/z} の原点での値は1であると。その時、理由はなく結果だけが閃いたのです。 当時は まだゼロ除算算法は考えられておらず、数値としてのゼロ除算1/0=0/0=0だけが認識されていましたから、 この直感には凄い飛躍が有ります。 実際、 その関数の原点の周辺には 神秘性が漂っていて 深い謎に覆われているときでした。世の常識では その関数は原点で 真性特異点をもち、ピカールの定理で、原点を除いた原点の近傍で 例外の複素数1個(ピカールの除外値)を除いて、すべての複素数を無限回とるなど 複素解析学の深い定理があり 値分布理論の雄大な数学の素を与えています。 その時、特異点 原点自身で、1の有限確定値を取る と直感したのですから、 凄い発想と言えます。 後で気づいたのですが、 その値1は ピカールの除外値 自身でした。ローラン展開の負冪項が すべて原点でゼロであることを言っていますので、 正しく、ゼロ除算算法の発見の瞬間です。
理屈以前に、理論、論理以前に 電光のように一瞬に閃いたということです。
これが記録して置きたい真実、事実です。 あの夜のことが 鮮やかに思い出されます。興奮して、宿舎に着くや直ぐにブログに書きました。
ゼロ除算算法は 基本的な算法として 数学の基本的な演算となるのは、既に歴然です。アリストテレス、ユークリッド以来の世界観の変更さえ求めています。
添付附録:
PCから貴重な記録: ゼロ除算算法の 始めの瞬間:
複素解析・特異点:
特異点解明の歩み100/0=0,0/0=0:
複素解析・特異点:
特異点解明の歩み100/0=0,0/0=0:
関係者:
解析関数論における大発見:
2014.3.8.20:
中華料理を頂き、たっぷり買い物をして戻りました。月が中天、特異点の様子を考えながら歩いて来ました。良く、考えが湧く、池のほとりに差し掛かった時、驚嘆すべき 結果を得ました。解析関数の基本です: e^{1/z} は 原点で真性特異点、猛烈な不連続性を持ち、神秘的な性質を持ちます。ところが何と、原点では 1の値をとることになる!! これで、関数論の歴史は 大きく変わることになる。 直ちに公開、公論で、世界史の進化を志向したい。
2014.3.8.20:30[ブログから]
________________
実数で論文を2編 昨日までに完成、そこで複素解析の検討を始める。直ぐに、無限遠点の概念があり、複素解析では奇妙、変な状況に成っているのに気づく。無限遠点は 数ではないが、幾何学的にすべて美しく纏まっている。1/0=0なら複素数を1/zは複素数にちょうど1対1に写している。しかし、0が 不動点に成っている。初頭の問題とともに納得が行かないので、この問題を検討して行きたい。
2014.3.30.11:10
_________________
e^{1/z} は原点で考えない、{1/z}は原点で、無限遠点を対応させる、しかし、無限遠点は数ではないからですね。矛盾では?上記のように対応させると 1として確定値が定まる。無限遠点を考えるとき、1/0=0の考えを持たなかったのか??
2014.3.30.15:50
__________________
研究の発端は、上記矛盾を見逃さない。1/0=0の尊重、1/z の関数の ゼロ点の像が ゼロであることの尊重です。そのような関数は、実関数の時と同様 基本的であると考える。そこでまず、従来の美しい複素解析学において、ゼロで割る場面以外は そのまま尊重、成り立つと確認する。そこで、1/0=0 を取り入れると、例の無限遠点がストンと非連続的に落ちていると考える必要があり、一次関数などの1対1対応など崩れて、嫌な感じが出ますが、分母をゼロにする点だけを例外にして進める。極などいろいろな性質は、極で、無限遠点をとると考えないで、無限に増大しているとして、その様を捉えれば、従来の言葉の修正で対応できる、する。この考えで、新しい何かの定理ができれば、素晴らしい1歩では? 上記例から、真性特異点で確定値を取るが言えれば、凄い結果ではないでしょうか。
2014.4.1.11:35
解析関数論における大発見:
2014.3.8.20:
中華料理を頂き、たっぷり買い物をして戻りました。月が中天、特異点の様子を考えながら歩いて来ました。良く、考えが湧く、池のほとりに差し掛かった時、驚嘆すべき 結果を得ました。解析関数の基本です: e^{1/z} は 原点で真性特異点、猛烈な不連続性を持ち、神秘的な性質を持ちます。ところが何と、原点では 1の値をとることになる!! これで、関数論の歴史は 大きく変わることになる。 直ちに公開、公論で、世界史の進化を志向したい。
2014.3.8.20:30[ブログから]
________________
実数で論文を2編 昨日までに完成、そこで複素解析の検討を始める。直ぐに、無限遠点の概念があり、複素解析では奇妙、変な状況に成っているのに気づく。無限遠点は 数ではないが、幾何学的にすべて美しく纏まっている。1/0=0なら複素数を1/zは複素数にちょうど1対1に写している。しかし、0が 不動点に成っている。初頭の問題とともに納得が行かないので、この問題を検討して行きたい。
2014.3.30.11:10
_________________
e^{1/z} は原点で考えない、{1/z}は原点で、無限遠点を対応させる、しかし、無限遠点は数ではないからですね。矛盾では?上記のように対応させると 1として確定値が定まる。無限遠点を考えるとき、1/0=0の考えを持たなかったのか??
2014.3.30.15:50
__________________
研究の発端は、上記矛盾を見逃さない。1/0=0の尊重、1/z の関数の ゼロ点の像が ゼロであることの尊重です。そのような関数は、実関数の時と同様 基本的であると考える。そこでまず、従来の美しい複素解析学において、ゼロで割る場面以外は そのまま尊重、成り立つと確認する。そこで、1/0=0 を取り入れると、例の無限遠点がストンと非連続的に落ちていると考える必要があり、一次関数などの1対1対応など崩れて、嫌な感じが出ますが、分母をゼロにする点だけを例外にして進める。極などいろいろな性質は、極で、無限遠点をとると考えないで、無限に増大しているとして、その様を捉えれば、従来の言葉の修正で対応できる、する。この考えで、新しい何かの定理ができれば、素晴らしい1歩では? 上記例から、真性特異点で確定値を取るが言えれば、凄い結果ではないでしょうか。
2014.4.1.11:35
_______________________
以 上
0 件のコメント:
コメントを投稿