2019年1月18日金曜日

デヴィッド・ボウイ、イギリス国民が選ぶ20世紀の最も偉大なエンタテイナーに

デヴィッド・ボウイ、イギリス国民が選ぶ20世紀の最も偉大なエンタテイナーに

デヴィッド・ボウイはイギリス国民が選ぶ20世紀の最も偉大なエンタテイナーに選出されている。
BBC2で放送されている20世紀の歴史を辿る全8回のシリーズ「アイコン」の最新エピソードとなるエンタテイナー部門の回が放送され、マリリン・モンローやチャーリー・チャップリン、ビリー・ホリデイらを抑えて、視聴者の投票でデヴィッド・ボウイがエンタテイナー部門の最も偉大な人物に選ばれている。
2016年1月に亡くなったデヴィッド・ボウイは今回、20世紀の最も偉大なリーダーに選出されたネルソン・マンデラや、最も偉大な探検家に選ばれたアーネスト・シャクルトンらに加わっている。
キャスリーン・ターナーがエンタテイナーの回の司会を務め、デヴィッド・ボウイ、チャーリー・チャップリン、マリリン・モンロー、ビリー・ホリデイを最も偉大なエンタテイナーの候補として発表している。盛大に4人の名前を発表したキャスリーン・ターナーは、デヴィッド・ボウイについて次のように賛辞を送っている。「あらゆるエンタテイナーにとってのクリエイティヴの基準を高めた彼はまさしく、イギリス国民による投票で20世紀の究極的なアイコンに選ばれるのにふさわしいと言えるでしょう」
「アイコン」では次のエピソードとなる活動家の部門が現地時間1月21日の午後9時より放送されるほか、翌週にはスポーツ部門が放送される。また、先日放送された科学者の部門では数学者のアラン・チューリングが最も偉大な科学者に選出されている。
また、このシリーズの最後には20世紀で最も偉大なアイコンを決める投票も行われる予定だという。
デヴィッド・ボウイの他のニュースとして、先日、9曲のレア音源を収録したアナログ盤ボックスセットが今年リリースされることが発表されている。
デヴィッド・ボウイの72回目となる誕生日を1月8日に迎えたことを受けて、パーロフォンより“Space Oddity”の最初期のデモ・バージョンを含む9枚の7インチ・シングルからなるボックスセット『スパイング・スルー・ア・キーホール』がリリースされることが発表されている。

とても興味深く読みました
ゼロ除算の発見は日本です:
∞???   
∞は定まった数ではない・・・・
人工知能はゼロ除算ができるでしょうか:

5年  ゼロ除算の発見と重要性をした:再生核研究所  2014年2月2日


初期から ゼロ除算の発見時から、ゼロ除算の発見は 歴史的なものと考えて、詳しい過程を記録してきたが、ゼロ除算の影響は 初等数学全般に及び、我々の世界観の変更を要求している。 言わば新しい世界を拓く契機を与えるだろう。世界史は大きく動き、新しい時代を迎えられるだろう。しかるに 発見5周年を迎えても その大きな影響を理解しない世情は、人類の歴史に 汚点を刻むことになるだろう。 数学の論理は 絶対的であり、数学の進化も 大局的には必然的なものである (再生核研究所声明 467 (2019.1.3):  数学の素晴らしさ ー 数学は絶対的な世界である)。
一数学者として このようなことは、真智を求める者として、愛する者として、研究者の良心に掛けて、 断言せざるを得ない。 また表現は、関係者たちが 言わば晩年を迎えている実状を鑑みて、 率直にならざるを得ない。実際、我々は明日の存在を期待してはならない状況にある。
世にゼロで割ってはいけない、ゼロ除算は不可能であるや不定であるという常識は、全くの狭い見方、考え方、発想で、自然な意味でそれらは可能で、できないといって避けていたゼロ除算から、実は誰も考えたことのない世界が現れ、それが初等数学全般に及ぶことが900件を超える知見で明らかにされてきた。
要点は、解析関数を考えるときに、特異点そのものでは考えず、特異点を除いた部分で関数を考えて来たのに、実は孤立特異点そのもので、解析関数は、有限確定値を取ることが 分かったことである。― 例えば、解析関数 W= exp (1/z) は 原点z=0 でピカールの除外値1を取っている(ゼロ除算算法)。― 何と、この関数は原点の近くで、ただ一つの例外の数を除いて、すべての複素数値を無限回取るとされてきたが、その例外値が実は、特異点で取られていた。 その意味で、全く新しい数学が発見されたという事実である。 その影響は900件を超える知見を齎し、初等数学全般に大きな影響を与える。既に確立しているホーン・トーラスという、アリストテレス、ユークリッド以来の リーマン球面に代わる空間が発見された。我々の結果は そのように自然な分数の意味で、1/0=0/0=\tan(\pi/2)=0 と表現されるが、その影響は 世界観の変更さえ要求され、現在の世界は、ゼロ除算の新しい世界から見ると、未だ夜明け前と表現される。現在全体の様子を著書に纏め中である。

少し具体的に内容に触れて置く:
まず代数学的にはゼロ除算を含む簡単な体の構造(山田体)が与えられているが、このことの認識が抜けているのは 代数学における 相当に基本的な欠陥 であると考えられる。体の構造はあまりにも基本的であるということである。
幾何学においては無限遠点がゼロで表されることから、無限遠点が関与する幾何学、平行線、直線、円、三角形、2次曲線論など広範な幾何学に欠陥が存在する。曲率、勾配などの概念の修正が求められる。我々の空間の認識は 数学的にはユークリッド以来 不適当である と言える。図形の式による孤立特異点を含む表現で、孤立特異点でゼロ除算算法を用いると いろいろ面白い図形や、量が現れて、新規な世界が現れてくる。無限、特異点として考えて来なかった世界における新しい現象が現れてきた。これは未知の広大な世界である。
解析学では、いわゆる孤立特異点では、そこでは一切考えて来なかったが、孤立特異点そこで、ローラン展開は ゼロ除算算法として意味のある世界が拓かれているので、全く新しい数学を展開することが可能である。直接大きな影響を与えるのは微分方程式の分野で ゼロ除算算法の視点から見ると、 微分方程式論は 相当に欠陥に満ちていると言える。典型的な結果はtan(\pi/2)=0である。微分係数がプラス、あるいはマイナス無限大と考えられてきたところが 実はゼロで、微分方程式論に本質的な影響を与える。特異点でも微分方程式を満たすという概念が生まれた。
複素解析学ではゼロ除算算法の応用、影響の大きさから、そのように重要なゼロ除算算法の意義の解明が望まれる。様々な解析関数の孤立特異点の値は数学辞典、公式集の新たな章になるだろう。三角関数など初等関数については既に相当な結果が得られている。未知の世界である、孤立特異点での関数の性質を研究する、新世界における問題が広がっている。
一般的な視点からの要点とは、まず、我々はゼロで割れることを、厳密な意味で与えて、言明し、その広範な影響が出てきたこと。それと裏腹に ゼロと無限の関係を明らかにして、永い懸案のそれらの概念を明らかにして、それらの関係が確立されたことである。特に この基本的な関係は リーマン球面に代わるモデルとして、ホーン・トーラスとして 幾何学的に明示される。― それで、無限とゼロの意味とそれらの関係が分かったと言える。最近物理学者も興味を寄せてきているが、ホーン・トーラス上の数学は、今後の課題である。

ゼロ除算算法とは 強力な不連続性を伴った 仮説であり、仮定であるが、ゼロ除算そのものの意味は依然不明であり、その意味の追求は ブラックホールの解明のようにゼロ除算算法の研究を行うことで、意味を追求していくことになる。その本質は、どうして そのように強力な不連続性が与えられているか、無限とゼロの関係を追及していくことである。もちろん、universe の現象として捉えていく必要がある。

5周年を迎えるに当たって、我々は世に ゼロ除算の理解を広く求め、かつ、関係者の研究への参加と協力を求め、かつお願いしたい。
数学の教育関係者、出版関係者には初歩的で基本的な新しい数学からの広範な影響を 教育・文化に反映させるように協力をお願いしたい:

再生核研究所声明 431(2018.7.14):  y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界? 

( 部分引用:原点から出る直線の勾配で 考えられない例外の直線が存在して、それがy軸の方向であるということです。このような例外が存在するのは 理論として不完全であると言えます。それが常識外れとも言える結果、ゼロの勾配 を有するということです。この発見は 算術の確立者Brahmagupta (598 -668 ?) 以来の発見で、 ゼロ除算の意味の発見と結果1/0=0/0=0から導かれた具体的な結果です。
それは、微分係数の概念の新な発見やユークリッド以来の我々の空間の認識を変える数学ばかりではなく 世界観の変更を求める大きな事件に繋がります。そこで、日本数学会でも関数論分科会、数学基礎論・歴史分科会,代数学分科会、関数方程式分科会、幾何学分科会などでも それぞれの分科会の精神を尊重する形でゼロ除算の意義を述べてきました。招待された国際会議やいろいろな雑誌にも論文を出版している。イギリスの出版社と著書出版の契約も済ませている。
2014年 発見当時から、馬鹿げているように これは世界史上の事件であると公言して、世の理解を求めてきていて、詳しい経過なども できるだけ記録を残すようにしている。
これらは数学教育・研究の基礎に関わるものとして、日本数学会にも直接広く働きかけている。何故なら、我々の数学の基礎には大きな欠陥があり、我々の学術書は欠陥に満ちているからである。どんどん理解者が 増大する状況は有るものの依然として上記真実に対して、数学界、学術雑誌関係者、マスコミ関係の対応の在り様は誠におかしいのではないでしょうか。 我々の数学や空間の認識は ユークリッド以来、欠陥を有し、我々の数学は 基本的な欠陥を有していると800件を超える沢山の具体例を挙げて 示している。真実を求め、教育に真摯な人は その真相を求め、真実の追求を始めるべきではないでしょうか。 雑誌やマスコミ関係者も 余りにも基礎的な問題提起に 真剣に取り組まれるべきでは ないでしょうか。最も具体的な結果 y軸の勾配は どうなっているか、究めようではありませんか。それがゼロ除算の神秘的な歴史やユークリッド以来の我々の空間の認識を変える事件に繋がっていると述べているのです。 それらがどうでも良いは おかしいのではないでしょうか。人類未だ未明の野蛮な存在に見える。ゼロ除算の世界が見えないようでは、未だ夜明け前と言われても仕方がない。)

再生核研究所声明 469 (2019.1.17)  なぜ二つの負数を掛け算すると正数になるのですか?(回答)
小杉 崇夫 (Takao Kosugi)
小杉 崇夫 (Takao Kosugi), 東京理科大学で建築を専攻
追記:(2018年12月6日)

最近、同様な質問を素人の方から、受けましたが、結構 素朴な疑問を懐いておられる方が多いのではないでしょうか。 そこで、一つの回答を纏めてみたい。
先ず、考え方ですが、このような質問の背景を考える必要があります。 お釈迦さまは お釈迦様の教えは 3000巻の法華経に纏められているということです。 それは、お釈迦様が 相手をみて、相手の状況を察して、 いろいろな説き方をされたためと 考えられます。 一般的に、あるいは普遍的に 真実を述べれば良いでは 済まされず、受け止められる相手の状況を考えて 個別に説かれたという背景があると思われます。 
ご質問の意味は、数学的な意味を問うているのではなくて、感覚的に分かった、納得したいという感情から 質問を寄せられていると考えられます。 実際、数学では、数学の内容について、何でも 厳密な回答が与えられる構造をしており、その意味で 数学は完全で、絶対的です:

再生核研究所声明 467 (2019.1.3):  数学の素晴らしさ ー 数学は絶対的な世界である

そこで、質問者の背景ですが、質問されている内容にある、負数掛け算が 鍵ですが、それらの意味がはっきりしなければ、質問事体 意味をなさなくなってしまいます。 大事な論点をきちんとする必要があります。 世の多くの問題について、 良く分からずに 質問したり、考えている場合が 実に多いことに思いを寄せたいと思います。 良く意味が分からずに、問題を考えていることが 実は多いので、この観点は大事です。

マイナスの数と、掛け算の意味を、それらの本質を捉えることが この質問の鍵です。しかも数学的に厳格に意味を与えることは、述べたように簡単ですが、そうではない、分かり易い説明が 求められていると考えます。 回答には相手の要求の程、背景の知識の程を勘案する必要があります。
そこで、自然数 1,2,3, … を数直線上に 対応させて考えます。 すなわち、 直線上に 基点(原点) O を固定して、右側の点Eを勝手にとって固定して その点を長さの単位OE =1として取り、Oに0、Eに 1を 対応させる。それで、 Oから長さ x にある点を X:  OX=x として その座標を xとします。xは 正の数としているので、それらは O  で分けられた直線の E を含む方に 対応させます。同じように考えて、正の実数を Eの方向の点に対応させます。正の実数とは この座標の考え方で、Oより右側に存在する半直線上の点と1対1に対応させます。
正の数は 良く分かりましたので、マイナス の数の導入と 掛けることの意味の定義を与えます。 今でも、-1は 数か、それは 存在するのかという 問題を提起される人が います。 それを掛けるとは どのような事かを問題にします。
そこで、ここでは –1を掛けることは、例えば ―1 掛ける2は、(-1) x 2=                -2 と書いて、2の O に関する反対側の点を 対応させると定義します。そう考えます。そのように考えられる O に関して Eと反対側に存在する数が、負数です。 このようにして、実数全体を 直線全体と1対1に対応付けられた直線が 数直線です。これは 世で言う 実軸です。
これらは 厳格に正しいのですが、上記の背景で、問題の回答は 明白、歴然になります。
-1 を掛けることは、 原点に対して、対称の点を 対応させることです。
-2に -1 を掛ければ、当然 2です。-1掛けるー1は 当然 1です。
これで、一般的に 負数掛ける負数が正の数に なることも歴然です。 負数の存在も、負数を掛けることも 歴然です。
―1の意味も良く分かって 頂けたのでは ないでしょうか。
世情でも、お金を貸す量をプラスで、借りる量をマイナスで 表わせば、プラス、マイナスの演算は 良く、実情を表すと考えられるのではないでしょうか。 その時、マイナスを付ければ、貸すと借りるの関係が 逆転すると考えれば 良いです。もちろん、借金を続ければ、借金は大きくなり、加法の演算と積の演算を混同して、 借金を重ねたら、借金が減った、 貸したお金になったと誤解してはならない。
風向きなど ベクトル、大きさと方向を持つ量に マイナス1を掛けたち, マイナスを付ければ、方向が逆転します。 複素数zの場合, -zは 原点z=0 に関する対称な点を表します。マイナスは、もっと広い世界で成り立つ概念です。いわば反対の世界を表しています。

以 上


再生核研究所声明 468 (2019.1.4) ゼロと無限の意味と関係 

 ゼロと無限の正確な意味と関係を簡明に記述したい。厳格な記述がここでは 大事である。
先ず、ゼロと無限の ここでの定義である。定義は論理の初めに大事である。ここではゼロとは、複素数のゼロのことで、複素数体の加法における単位元で したがってゼロの定義は 厳密に定義された。それを 複素数平面に表現して、幾何学的には複素平面の原点を表すと考えれば、ゼロは複素数面上に表現されていると考えられる。

次は無限の定義である。これはいろいろ意味や定義もあるので、ここでは 厳格に次のように定義しよう。 簡単に言えば、所謂複素解析学における無限遠点のことであり、無限の意味を明瞭にしたい。複素平面の一点コンパクト化という概念がある。 複素平面のあらゆる円盤の外に存在する点を想像して それを無限遠点と名付けて考える。そのような点は存在するだろうか。想像上の点なので理想点とも呼ばれているが、その想像上の点はz平面上に球を置いて、z  複素平面から球面上に立体射影すると、そのような理想上の点は 実は球面の北極に対応する点として考えられ、球面上では明確に この点に対応する点として、球面上では見えるように 明白に 捉えられる。 立体射影については 詳しい解説が幾らでも参照できるので、図を見ながら、参照して頂きたい。
すると、ここで言う、無限とは 無限遠点のことで、球面上では 北極点に対応する点として定義され、実在感もして、あらゆる円盤の外に存在する点であることも理解できるだろう。- ここで、あらゆる円盤の外を考えるのは 位相空間論で 平面のコンパクト化の概念を導入するために必要な表現である。-
ところで、この無限は、実数の場合ならば、実軸上の あらゆる区間の外にある点を考えるのであるから、プラス無限大やマイナス無限大を 表現していることが分かり、この無限の定義は適切であること、定義の裏付けとしての良さを理解できるだろう。
そこで、問題はその無限遠点は どのように表現されるだろうか ということである。 それは数だろうか。
複素解析では 無限の方に存在するとして 無限の記号∞で表現してきた。 複素解析では 符号なしの無限で、北極に対応する点である。 直線上をどのような方向に 行っても対応する球面上の点は 北極点に到達するから、この考えは自然で、諒解できるだろう。この考えは100年を超えた考え方で、世の定説と考えられている。- 大事な論点は 無限は近づく、極限の考え方で 捉えられているという 観点である。無限には、極限の概念が必要である。― 近づく、限り無く近づくという考え、概念である。限りなく遠ざかるも同様である。
ところがゼロ除算の発見で、天地が入れ替わるような事実が発見された。これは ゼロと無限の本質的な関係を述べている。基本的な関数W=f(z) =1/z を考える。z がゼロに近づくとき、W は限りなく無限遠点、無限に近づいていくことが 容易に分かる。これは歴然である。限りなく無限に近づいていくのだから、1/0 を無限としたくなるのは当然である。実際、1/0 = ∞ と書きたくなり、書いている本も多い。近づいている様をそのように表現していると言明すれば、それは定義であるから、正しい。適切な表現である。∞ の意味は厳密に定義された。 1/0 の意味は如何であろうか。当然、普通の分数でないことは明らかである。 実際、もし、それを a と置けば  1= a x 0 =0 となり、矛盾になってしまう。 我々の今の考察では、1/0 で 関数W=f(z) =1/z で z がゼロに近づいた先を表している意味と解釈される。すなわち、等式 1/0 = ∞ は 両辺とも極限を通して、両辺の意味が与えられる。近づいて行った先を表している。この意味は正確に正しい。
ところがこの状況で ゼロ除算の発見とは 次のようなものであった。関数W=f(z) =1/z
の原点 z =0  の値は 何と ゼロであるというのである。この事実は沢山の動機づけと具体例で示され、結果は既に 数学的な実体 であると言える。- この件は、ここでは触れず、事実として進める。
ゼロ除算では 1/0 の意味は もちろん普通の分数ではないが、関数W=f(z) =1/z
の原点 z =0  の値が ゼロであるという意味である。この意味はもちろん明白である。
我々は沢山の動機づけと定義を導入したが、この表現が最も簡明で良くゼロ除算の意味を表現していると考えている。
実関数y=/xのグラフを書いて その関数の原点での値をゼロとすれは、ゼロが、原点がグラフの中心で美しい点を表していることを見ることができるだろう。 そこに現れたのが、強力な不連続性である。実関数y=1/x は 正の方向からゼロに近づけば、正の無限大に、負の方からゼロに近づけば負の無限大に近づくのに、原点での 値は何とゼロである。
ここで実に面白いのは、1/0 について、2つの解釈が有って、一方では無限で、他方ではゼロである。天と地の違いで、無限は極限の概念で捉えられ、ゼロは関数値として確定値、すなわち数ゼロで表された事実である。
無限とは非有界に発散していく先を表す、無限遠点のことで、近づいて行った極限点は 数字ゼロで表されている。- 無限遠点がゼロで表されていることを表現している。これで、ゼロと無限の関係は 捉えられたであろうか。 いろいろ冗長に述べたが、ゼロと無限の関係は、無限遠点がゼロで表されると厳格に述べられる。 ゼロも無限遠点も厳格に述べられ、それらの関係も厳格に述べられている。
数学的にはこれで良いが、神の意志を想い、なぜ無限遠点がゼロで表されたのであろうと哲学的な考察を進めるのは 楽しい。
これについて、想いを少し述べて置きたい。無限遠点とは想像上の点であり、それを表す数は 存在しない。ゆえにそれを表現する数も存在しない。 そのような時にゼロで表現する。
すなわち、ゼロには存在しないこと、不可能性を示す意味が存在する と考える。ゼロの役割と意味が存在すると考える。関数y=1/x は 正の方向からゼロに近づけば、正の無限大に発散する。 その先を表現する数は存在しない。それ故に ゼロで表されると神の意志を想って理解するのが良いと考える。
2つの例を挙げよう。

1 + 1+ 1+ ……
1 + 2 +3+ ……

のように 限りなく加えて行けば、それらは、どうなるだろうか。部分和の極限値を考えて それらは +∞ と考えられる。ところがゼロ除算の世界では それらの結果は 何とゼロになることが 広範な例ばかりではなく、厳格に導かれた。この驚嘆すべき結果は、上記神の意志と考えられる原理によって理解するのが良いと考える。我々は数学の論理を超えて 分かったと理解したい、納得したいものである。
ここで、結果ゼロであることに対して、それでは、上記で 途中から加えて行ったらどうなるかと考えて それらも再びゼロになるが、明らかな矛盾に陥ると考えてはならない。級数の和が上の場合のようにゼロになるとき、級数の和は実は、普通の意味での和ではなく、新しいある意味での和になるということである。- これは 条件収束級数における和と同じように元々の意味での和でない場合と同じようで、我々は新しい意味での和を考える必要がある。― 結果としては、無限を確定値のように考えていた場合、実際はゼロで表される。
それは、上記神の意志による。 数学的にも厳格に導かれる。
ゼロと無限遠点の関係を実現する リーマン球面(立体射影における球面)に代わる新しい空間のモデルとして、ホーン・トーラスのモデルが最近得られた。


サイトの美しいトーラスを見て下さい。ゼロと無限遠点が接していることが分かる。我々はゼロと無限が似たような性質があると感じてきたが、実はそれらは接していて、一つの2面であることが分かった。原点を通る直線はホーン・トーラス上では 2つの閉曲線に写るから従来の世界観とは違った新しい空間であることが分かる。

ゼロの歴史は結構知られているが、無限の歴史は不明なので下記を添付して置きたい:

歴史
紀元前400年から西暦200年頃にかけてのインド数学では、厖大な数の概念を扱っていたジャイナ教の学者たちが早くから無限に関心をもった。教典の一つである「スーリヤ・プラジュニャプティ」(Surya Prajnapti)では、すべての数は可算、不可算、無限の3種類に分類できるとしている。さらに無限には、1方向の無限、2方向の無限、平面の無限、あらゆる方向の無限、永遠に無限の5種類があるとした。これにより、ジャイナ教徒の数学者は現在でいうところの集合論や超限数の概念を研究した。


以 上

神の数式:                                                                        
神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。
物理学者如何でしょうか。

 https://plaza.jp.rakuten-static.com/img/user/diary/new.gif
カテゴリ:カテゴリ未分類
​そこで、計算機は何時、1/0=0 ができるようになるでしょうか。 楽しみにしています。 もうできる進化した 計算機をお持ちの方は おられないですね。
これは凄い、面白い事件では? 計算機が人間を超えている 例では?

面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 世界史の恥。 実は a/0=0 が 何時も成り立っていた。 しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている 様が 出て居て 実に 面白い。
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23
カテゴリ:カテゴリ未分類
面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 実は a/0=0 が 何時も成り立っていた。しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている様が 出て居て 実に面白い。

 
https://steemkr.com/utopian-io/@faisalamin/bug-zero-divide-by-zero-answers-is-zero
2018.10.11.11:23

ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a  割る b のことで、これは 方程式 x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:

最近、3つの事が在りました。

私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。

これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1.      ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2.      可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3.      ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4.      深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.



Eπi =-1 (1748)(Leonhard Euler
1/0=0/0=0 (201422日再生核研究所)

ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0

https://ameblo.jp/syoshinoris/entry-12420397278.html


1+1=2  (      )
a2+b2=c2 (Pythagoras
1/0=0/0=0201422日再生核研究所)

 






LowLow
1,500円
Amazon


0 件のコメント:

コメントを投稿